1
|
Ye B, Zhang J, Zhou Y, Tang M, You F, Li X, Yang Q, Wang D, Liu X, Duan A, Liu J. Pretreatment of free nitrous acid combined with calcium hypochlorite for enhancement of hydrogen production in waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165774. [PMID: 37499831 DOI: 10.1016/j.scitotenv.2023.165774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
A variety of variables limit the recovery of resources from anaerobic fermentation of waste activated sludge (WAS), hence pretreatment strategies are necessary to be investigated to increase its efficiency. A combination of free nitrous acid (FNA) and calcium hypochlorite [Ca(ClO)2] was employed in this investigation to significantly improve sludge fermentation performance. The yields of cumulative hydrogen for the blank and FNA treatment group were 1.09 ± 0.16 and 7.36 ± 0.21 mL/g VSS, respectively, and 6.59 ± 0.24 [0.03 g Ca(ClO)2/g TSS], 7.75 ± 0.20 (0.06), and 8.58 ± 0.22 (0.09) mL/g VSS for the Ca(ClO)2 groups. The co-treatment greatly boosted hydrogen generation, ranging from 39.97 ± 2.26 to 76.20 ± 4.78 % as compared to the solo treatment. Mechanism analysis demonstrated that the combined treatment disturbed sludge structure and cell membrane permeability even more, which released more organic substrates and enhanced biodegradability of fermentation broth. This paper describes a unique strategy to sludge pretreatment that expands the use of Ca(ClO)2 and FNA in anaerobic fermentation, with implications for sludge disposal and energy recovery.
Collapse
Affiliation(s)
- Boqun Ye
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yintong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mengge Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fengyuan You
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junwu Liu
- Hunan Engineering Research Center of Mining Site Pollution Remediation, Changsha 410082, PR China
| |
Collapse
|
2
|
Wang S, Jiang T, Chen X, Xiong K, Wang Y. Enhanced volatile fatty acid production from waste activated sludge by urea hydrogen peroxide: performance and mechanisms. RSC Adv 2023; 13:15714-15722. [PMID: 37235110 PMCID: PMC10206479 DOI: 10.1039/d3ra02538a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Anaerobic acidogenesis of waste activated sludge (WAS) presents significant potential for resource recovery and waste treatment. However, the slow hydrolysis of WAS limits the efficiency of this approach. In this study, we applied urea hydrogen peroxide (UHP) pretreatment to enhance WAS hydrolysis and investigated the effects of operating parameters on volatile fatty acid (VFA) production and the associated mechanisms. Results demonstrated that UHP significantly improved WAS hydrolysis and VFA production, with a three-fold increase in soluble chemical oxygen demand (SCOD) compared to the control group. UHP dosage emerged as the most critical factor for VFA production, with the maximum VFA concentration increasing from 1127.6 to 8800.9 mg COD per L as UHP dosage ranged from 0 to 6 mmol g-1 VSS (Volatile suspended solids). At an optimal UHP dosage of 4 mmol g-1 VSS, both the unit oxidant promotion efficiency (ΔVFAs/ΔUHP) and the maximum VFA concentration reached relatively high levels, at 35.3 mg COD per mmol and 7527.3 mg COD per L, respectively. UHP pretreatment generated alkaline conditions, H2O2, ·OH and free ammonia, which collectively disrupted the extracellular polymeric substances (EPS) structure, transforming unextractable EPS into extractable forms and promoting the release of organic matter during both the pretreatment and fermentation stages. Excitation-emission matrix (EEM) analysis revealed that UHP increased the concentration of easily utilizable organic matter, providing more substrates for acidogenic bacteria and enhancing VFA production. Furthermore, weak alkaline conditions and high free ammonia concentrations in the UHP group facilitated VFA accumulation by preventing rapid acidification and suppressing methanogen activity. This study offers valuable insights into the potential of UHP pretreatment for enhancing WAS hydrolysis and VFA production, with promising applications in wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Siyi Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Tianbing Jiang
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiaoguo Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
- Hubei Key Laboratory of Mineral Resources Processing and Environment Wuhan 430070 China
| | - Kai Xiong
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yanzhe Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|