• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5074110)   Today's Articles (187)
For: Fu Y, Cao W, Pan D, Ren Y. Changes of groundwater arsenic risk in different seasons in Hetao Basin based on machine learning model. Sci Total Environ 2022;817:153058. [PMID: 35031360 DOI: 10.1016/j.scitotenv.2022.153058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Number Cited by Other Article(s)
1
Zhao Y, Yang L, Pan H, Li Y, Shao Y, Li J, Xie X. Spatio-temporal prediction of groundwater vulnerability based on CNN-LSTM model with self-attention mechanism: A case study in Hetao Plain, northern China. J Environ Sci (China) 2025;153:128-142. [PMID: 39855786 DOI: 10.1016/j.jes.2024.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 01/27/2025]
2
Zhou X, Sun J, Yi H, Ye T, Zhao Y, Yang Y, Liu Z, Liang C, Huang J, Chen J, Xiao T, Cui J. Seasonal variations in groundwater chemistry and quality and associated health risks from domestic wells and crucial constraints in the Pearl River Delta. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025;27:936-949. [PMID: 40035090 DOI: 10.1039/d4em00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
3
Liu X, Yue FJ, Wong WW, Lin SC, Guo TL, Li SL. Arsenic toxicity exacerbates China's groundwater and health crisis. ENVIRONMENT INTERNATIONAL 2025;198:109435. [PMID: 40203502 DOI: 10.1016/j.envint.2025.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
4
Yue K, Yang Y, Qian K, Li Y, Pan H, Li J, Xie X. Spatial distribution and hydrogeochemical processes of high iodine groundwater in the Hetao Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;953:176116. [PMID: 39245383 DOI: 10.1016/j.scitotenv.2024.176116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
5
Bamal A, Uddin MG, Olbert AI. Harnessing machine learning for assessing climate change influences on groundwater resources: A comprehensive review. Heliyon 2024;10:e37073. [PMID: 39286200 PMCID: PMC11402946 DOI: 10.1016/j.heliyon.2024.e37073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]  Open
6
Yin S, Yang L, Yu J, Ban R, Wen Q, Wei B, Guo Z. Optimizing cropland use to reduce groundwater arsenic hazards in a naturally arsenic-enriched grain-producing region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024;368:122237. [PMID: 39163674 DOI: 10.1016/j.jenvman.2024.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
7
Khatun MF, Reza AHMS, Sattar GS, Khan AS, Khan MIA. Prediction of arsenic concentration in groundwater of Chapainawabganj, Bangladesh: machine learning-based approach to spatial modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024;31:46023-46037. [PMID: 38980486 DOI: 10.1007/s11356-024-34148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
8
Fu Y, Cao W, Nan T, Ren Y, Li Z. Hazards and influence factors of arsenic in the upper pleistocene aquifer, Hetao region, using machine learning modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;916:170247. [PMID: 38272097 DOI: 10.1016/j.scitotenv.2024.170247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
9
Chi Z, Xie X, Wang Y. Understanding spatial heterogeneity of groundwater arsenic concentrations at a field scale: Taking the Datong Basin as an example to explore the significance of hydrogeological factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024;352:120112. [PMID: 38244408 DOI: 10.1016/j.jenvman.2024.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
10
Wei B, Yin S, Yu J, Yang L, Wen Q, Wang T, Yuan X. Monthly variations of groundwater arsenic risk under future climate scenarios in 2081-2100. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;30:122230-122244. [PMID: 37966647 DOI: 10.1007/s11356-023-30965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
11
Guo W, Gao Z, Guo H, Cao W. Hydrogeochemical and sediment parameters improve predication accuracy of arsenic-prone groundwater in random forest machine-learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;897:165511. [PMID: 37442467 DOI: 10.1016/j.scitotenv.2023.165511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
12
Chattopadhyay A, Singh AP, Kumar S, Pati J, Rakshit A. The machine learning and geostatistical approach for assessment of arsenic contamination levels using physicochemical properties of water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023;88:595-614. [PMID: 37578877 PMCID: wst_2023_231 DOI: 10.2166/wst.2023.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA