1
|
Zhang J, Zhu M, Zhu Y, Huhe T, Wang Q, Lei T, Zhou Z, Meng X. Anaerobic fermentation integrated with pyrolysis for carbon resource recovery from food waste and biogas sludge: Effects of inoculation ratio and pyrolysis temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124879. [PMID: 40058053 DOI: 10.1016/j.jenvman.2025.124879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
In view of the food waste (FW) as well as its digestate are both the organic sources of municipal solid waste, this study explored the anaerobic fermentation (AF) and following pyrolysis carbonization to co-disposal the two wastes for carbon resource recovery, including short chain organic acid (SCOAs), pyrolysis gas and biochar. Results indicated that both the rate and yield of SCOAs production both increase with the rising ratio of biogas sludge (BS) to FW, enhancing the soluble carbon recovery. The highest SCOAs production of 474.33 mg/g-VS was achieved at the ratio of 2:1 in 72 h. To further utilize the carbon source, the solids from the fermented residue (FR) was pyrolyzed at 400, 600 and 800 °C, respectively. Findings showed that the carbon content in biochar decreases with the increasing pyrolysis temperature, while the carbon in pyrolysis gas exhibits the opposite trend. Integrating the AF and pyrolysis contributed to a carbon recovery about 56.39% when the FW and BS were co-fermented at a 2:1 ratio, followed by its FR was pyrolyzed at 600 °C. Additionally, the biochar prepared under these conditions displayed a specific surface area (SSA) of 313.10 m2/g, along with abundant pore structures and functional groups, indicating its potential applications as pollutant adsorbents and soil amendments. This research offers a new perspective on efficiently recovering high-value carbon sources through the co-treatment of FW and its digestate via AF integrated with pyrolysis.
Collapse
Affiliation(s)
- Jiongjie Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Mengmeng Zhu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Yuchen Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Taoli Huhe
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China.
| | - Qian Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Tingzhou Lei
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Zhengzhong Zhou
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Xiaoshan Meng
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Shao M, Zhang C, Chen Q, Wu H, Dong Z, Bai X, Wang N, Xu Q. Hydrothermal-enhanced pyrolysis for efficient NO X reduction and biochar valorization from food waste digestate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:112-122. [PMID: 38739988 DOI: 10.1016/j.wasman.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Pyrolysis has emerged as a promising technology for valorizing digestate resulting from the anaerobic digestion of food waste. However, the high NOX emissions during pyrolysis limit its application. This study proposed a hydrothermal coupled pyrolysis process to control the element transfer in digestate during biochar production. The efficient reduction of NOX emissions and the improvement of biochar adsorbability were realized. The hydrothermal process reduced the nitrogen content in solid digestate by 49.10 %-81.79 %, thus reducing the NOX precursors in syngas and the N-containing substances in bio-oil. Additionally, the specific surface area and the total pore volume of biochar were enhanced from 25 m2/g to 60-73 m2/g and 0.06 cm3/g to 0.12-0.14 cm3/g, respectively. More defects, oxygen-containing functional groups, and doped Ca on the biochar resulted in a high phosphate removal efficiency of 94 %. The proposed technology provides an efficient and environmentally friendly way to utilize the digestate.
Collapse
Affiliation(s)
- Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, PR China
| | - Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, PR China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, PR China
| | - Huanan Wu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, PR China
| | - Zihang Dong
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, PR China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, PR China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
3
|
Tian S, Gong X, Yu Q, Yao F, Li W, Guo Z, Zhang X, Yuan Y, Fan Y, Bian R, Wang Y, Zhang X, Li L, Pan G. Efficient removal of Cd(II) and Pb(II) from aqueous solution using biochars derived from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122364-122380. [PMID: 37966646 DOI: 10.1007/s11356-023-30777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Massive amount of food waste has been generated annually, posing a threat to ecological sustainability and the social economy due to current disposal methods. Urgent action is needed worldwide to convert the traditional pathway for treating food waste into a sustainable bioeconomy, as this will significantly benefit food chain management. This study explores the use of pyrolysis to produce different types of food waste biochars and investigates their adsorption capabilities for removing Cd2+ and Pb2+ in aqueous solution. The results indicated that co-pyrolysis biochar from fresh food waste and rice husk (FWRB) exhibited superior adsorption performance for Cd2+ (61.84 mg·g-1) and Pb2+ (245.52 mg·g-1), respectively. Pseudo-second-order kinetics (0.74 ≤ R2 ≤ 0.98) and Langmuir isotherms (0.87 ≤ R2 ≤ 0.98) indicated that the immobilized Cd2+ and Pb2+ on biochars were mainly attributed to the chemisorption, including precipitation with minerals (e.g., carbonates, silicates, and phosphate), complexation with functional groups (-OH), cation exchange (-COO-), and coordination with π-electrons. Furthermore, FWRB demonstrated reduced EC and Na content in comparison to food waste digestate biochar (FWDB) and food waste digestate co-pyrolysis with sawdust biochar (FWSB), with levels of Cd and Pb falling below China's current guideline thresholds. These findings suggested that co-pyrolysis of fresh food waste with rice husk could be applicable to the recycling of food waste into biochar products for heavy metal stabilization in contaminated water and soils.
Collapse
Affiliation(s)
- Shuai Tian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xueliu Gong
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Qiuyu Yu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Fei Yao
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Wenjian Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jinhua Biomass Technology Institute, Jinhua Municipality, Zhejiang, 321000, China
| | - Zilin Guo
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xin Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan Yuan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuqing Fan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Yan Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xuhui Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
4
|
Kumar Awasthi S, Verma S, Liu T, Kumar Awasthi M, Zhang Z, Syed A, Bahkali AH. Regulation of fungal communities during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 389:129823. [PMID: 37805085 DOI: 10.1016/j.biortech.2023.129823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
The role of protein shell (PS) amendment in altering the fungal community during pig manure (PM) composting was investigated. Six different dosages of PS based on the dry weight of PM (0 %, 2.5 %, 5 %, 7.5 %, 10 %, and 12 %; T1-T6, respectively) were mixed with wheat straw to make the initial feedstock and composted for 42 days. The results showed that Ascomycota, Basidiomycota, and Giomeromycota were the most abundant phyla in all treatments. However, the relative abundance of Giomeromycota was the highest in the control treatment, although a substantially greater population was observed in all treatments. Genus abundance declined steadily from T1 to T6; however, T4 and T6 had smaller populations. Correlation analysis also suggested that T6 amendment increased the overall fungal dynamics and organic matter degradation. Thus, T6 was more efficient to enhance the overall fungal population and dynamics with considerable network connections among all the analyzed parameters.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Hu J, Shen Y, Zhu N. Optimizing adsorption performance of sludge-derived biochar via inherent moisture-regulated physicochemical properties. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:70-81. [PMID: 37413847 DOI: 10.1016/j.wasman.2023.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Understanding the impact of abundant inherent moisture in sewage sludge on the physicochemical properties and adsorption applications of sludge-derived biochar (SDB) contributed significantly to promoting economical sludge reuse. The moisture (0-80%) contributed to the development of micropore and mesopore in SDB at 400 °C, resulting in a maximum increase in specific surface area (SSA) and total pore volume (TPV) of SDB by 38.47% (84.811-117.437 m2/g) and 92.60% (0.0905-0.1743 m3/g), respectively. At 600/800 °C, moisture only facilitated mesopore formation, while was exacerbated with increasing moisture content. Despite reduction in SSA during this stage, TPV increased by a maximum of 20.47% (0.1700-0.2048 m3/g). The presence of moisture during pyrolysis led to an increase in the formation of 3-5 thickened benzene rings and defective structures in SDB, along with more C=O, O-C=O/-OH, pyrrole N, pyridine N, and thiophene. As a result, moisture (40%/80%) increased the maximum adsorption capacity (76.2694-88.0448/90.1190 mg/g) of SDB (600 °C) for tetracycline, mainly due to enhanced pore filling effect and hydrogen bonding induced by improved physicochemical properties. This study offered a novel approach for optimizing the performance of SDB adsorption applications by manipulating the sludge moisture, which is critical for practical sludge management.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanwen Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Wang W, Chang JS, Lee DJ. Digestate-derived carbonized char and activated carbon: Application perspective. BIORESOURCE TECHNOLOGY 2023; 381:129135. [PMID: 37164231 DOI: 10.1016/j.biortech.2023.129135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
The flourishment of anaerobic digestion (AD) on waste treatment emphasizes the importance of digestate valorization, which plays an essential role in determining the benefits provided by the AD process. The perception of digestate gradually shifts from waste to products to realize the concept of circular economy and maximize the benefits of digestate valorization. This review first outlined the current status of digestate valorization, focusing on thermal-chemical methods. The novel valorization methods were then summarized from the recent research, illustrating prospects for digestate valorization. Limits and perspectives are finally addressed. Methods for preparing digestate-derived activated carbon and impurity effects were elucidated. Inherent mineral content/inorganic impurity could be a niche for downstream use. High surface area and well-developed pore structure are essential for satisfying downstream use performance, but they are not the only factors. Digestate char applications other than use as an energy fuel are suggested.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
7
|
Zhang T, Li H, Tang X, Zhong J, Li J, Zhang S, Huang S, Dou L. Boosted photocatalytic performance of OVs-rich BiVO 4 hollow microsphere self-assembled with the assistance of SDBS. J Colloid Interface Sci 2023; 634:874-886. [PMID: 36566633 DOI: 10.1016/j.jcis.2022.12.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In this study, monoclinic phase bismuth vanadate (BiOV4) photocatalyst with unique hollow microsphere morphology was successfully prepared by a hydrothermal method in the existence of sodium dodecyl benzene sulfonate (SDBS). The prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron (SEM) and X-ray photoelectron spectrometer (XPS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). Experimental results show that SDBS definitely changes the microstructure of BiVO4, which is allocated to the template role of SDBS in the preparation process. Moreover, the hydrothermal treatment time is also of crucial importance in affecting the structure and morphology of the photocatalysts, and the optimal hydrothermal treatment time for the formation of hollow microsphere is 24 h. Furthermore, the feasible growth mechanism for hollow microsphere was elaborated. Enriched oxygen vacancies (OVs) are introduced into BiOV4 prepared with SDBS, largely elevating the separation efficiency of photo-generated charges. Under visible light irradiation, the photocatalytic activities of BiOV4 for destruction of rhodamine (RhB) were evaluated. The photocatalytic degradation rate constant of RhB on the 3SBVO is 2.23 times of that on the blank BiOV4 as the mass ratio of SDBS/BiOV4 is 3 %. Photocatalytic degradation mechanism of BiVO4 toward detoxification of organic pollutants was presented.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Huan Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Xiaoqian Tang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Junbo Zhong
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China; College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Jianzhang Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Shulin Zhang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Shengtian Huang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Lin Dou
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| |
Collapse
|
8
|
Wang N, Bai X, Huang D, Shao M, Chen Q, Xu Q. Insights into the influence of digestate-derived biochar upon the microbial community succession during the composting of digestate from food waste. CHEMOSPHERE 2023; 316:137786. [PMID: 36634716 DOI: 10.1016/j.chemosphere.2023.137786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/03/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The by-product from the anaerobic digestion of food waste (FW) called the digestate (DFW) needs proper disposal because of its high environmental burden. Composting can transform DFW into a nutrient-containing soil improver via a series of microbial metabolic activities. However, the long composting time and high amount of ammonia emission are the key concerns of DFW composting. In the present study, the effect of DFW-derived biochar (BC-DFW) on microbial succession and its involvement in nitrogen transformation and humification during DFW composting were investigated. The results indicated that the BC-DFW accelerated bacterial and fungal evolution, and the bacterial diversity was augmented by increasing the amount of BC-DFW. In particular, Cryomorpha, Castellaniella, Aequorivita, and Moheibacter were enriched by the addition of BC-DFW, thereby enhancing the degradation of organic matter and nitrogen transformation and increasing the germination index. The group with 25% BC-DFW contained a higher relative abundance of Cryomorpha (2.08%, 2.47%) than the control (0.39%, 1.72%) on days 19 and 35 which benefited the degradation of organic matter. The group with 25% BC-DFW quickly enhanced the growth of Nitrosomonas, thereby accelerating the conversion of ammonium-nitrogen to nitrate-nitrogen and reducing the phytotoxicity of the composting product.
Collapse
Affiliation(s)
- Ning Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life and Sciences, Hainan Normal University, Haikou, Hainan Province, 571158, PR China; Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Dandan Huang
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
9
|
Acid-modified anaerobic biogas residue biochar activates persulfate for phenol degradation: Enhancement of the efficiency and non-radical pathway. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Xu L, Ye Z, Pan Y, Zhang Y, Gong H, Mei X, Qiao W, Gan L. Effect of lignocellulosic biomass composition on the performance of biochar for the activation of peroxymonosulfate to degrade diclofenac. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Peng Y, Li L, Dong Q, Yang P, Liu H, Ye W, Wu D, Peng X. Evaluation of digestate-derived biochar to alleviate ammonia inhibition during long-term anaerobic digestion of food waste. CHEMOSPHERE 2023; 311:137150. [PMID: 36356814 DOI: 10.1016/j.chemosphere.2022.137150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The feasibility of using food waste anaerobic digestate-derived biochar (FWDB) to mitigate ammonia toxicity in an anaerobic digester was evaluated. The optimal conditions for preparing and adding the activated FWDB were explored using response surface experiments, and the long-term effects of adding activated FWDB on digester performance under optimum conditions were verified in semi-continuous experiments. The results showed that the optimal preparation and addition conditions for activated FWDB were pyrolysis temperature of 565 °C, particle size of 0-0.30 mm, and dosage of 15.52 g·L-1. During the long-term operation of the digesters, when the total ammonia nitrogen (TAN) concentration was higher than 2000 mg·L-1, the control and experimental digesters showed deteriorated reactor performance. Volatile fatty acids in the control digester accumulated to 20,306 mg·L-1 after the TAN concentration increased to 3391 mg·L-1, the methane yield decreased to 31 mL·g VS-1, and the digester experienced process failure. In contrast, the experimental digester with added activated FWDB only suffered a slight short-term accumulation of acetate and a slight decline in methane yield. This may be attributed to the adsorption of NH4+/NH3 by activated FWDB, which reduced the TAN concentration in the anaerobic digestion (AD) system and mitigated ammonia toxicity. Microbial analysis and metagenome predictions demonstrated that the community richness, diversity, and evenness, as well as the abundance of acetogens and related key genes (ACSM1, paaF, and acdA) were higher in the experimental digester than in the control digester. This study provides a closed-loop AD enhancement strategy by pyrolysis of digestate and in-situ supplementation into the digester.
Collapse
Affiliation(s)
- Yun Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Qin Dong
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Pingjin Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Hengyi Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Wenjie Ye
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
12
|
Wang N, Huang D, Bai X, Lin Y, Miao Q, Shao M, Xu Q. Mechanism of digestate-derived biochar on odorous gas emissions and humification in composting of digestate from food waste. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128878. [PMID: 35427971 DOI: 10.1016/j.jhazmat.2022.128878] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Emissions of odorous gases and prolonged composting duration are the key concerns in the composting of digestate from food waste (DFW). In this study, different amounts of biochar derived from DFW (BC-DFW) were introduced in the composting process of DFW to decrease the emissions of ammonia (NH3) and volatile sulfur compounds (VSCs) and composting duration. The addition of BC-DFW increased the temperature and germination index during DFW composting. The group with 25% BC-DFW exhibited a 30% smaller composting duration. Significant amounts of NH3 and VSCs emissions were observed in the initial phase of DFW composting. Dimethyl disulfide (DMDS) was a prominent contributor to the odor associated with VSCs. The addition of BC-DFW facilitated the adsorption of NH3 and VSCs, and the corresponding contents decreased by 5-21% and 15-20%, respectively. Moreover,the BC-DFW accelerated the transformation of ammonium-nitrogen (NH4+-N) to nitrate-nitrogen (NO3--N), thereby alleviating the NH3 volatilization. The addition of 25% BC-DFW minimized the NH3 emission and enhanced the generation of humic-acid-like matter, thereby promoting humification. Therefore, the addition of 25% BC-DFW was optimal for promoting the degradation of organic matter and humification and odor emission reduction (e.g., NH3, DMDS).
Collapse
Affiliation(s)
- Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China; School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Yeqi Lin
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qianming Miao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|