1
|
Arfelis S, Martín-Perales AI, Nguyen R, Pérez A, Cherubin I, Len C, Malpartida I, Bala A, Fullana-I-Palmer P. Linking mechanochemistry with the green chemistry principles: Review article. Heliyon 2024; 10:e34655. [PMID: 39148985 PMCID: PMC11325060 DOI: 10.1016/j.heliyon.2024.e34655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
The need to explore contemporary alternatives for industrial production has driven the development of innovative techniques that address critical limitations linked to traditional batch mechanochemistry. One particularly promising strategy involves the integration of flow processes with mechanochemistry. Three noteworthy technologies in this domain are single-screw extrusion (SSE) and twin-screw extrusion (TSE) and Impact (Induction) in Continuous-flow Heated Mechanochemistry (ICHeM). These technologies go beyond the industrial production of polymers, extending to the synthesis of active pharmaceutical ingredients, the fabrication of (nano)materials, and the extraction of high-added value products through the valorisation of biomass and waste materials. In accordance with the principles of green chemistry, ball milling processes are generally considered greener compared to conventional solvothermal processes. In fact, ball milling processes require less solvent, enhance reaction rates and reaction conversion by increasing surface area and substituting thermal energy with mechanochemical energy, among others. Special attention will be given to the types of products, reactants, size of the milling balls and reaction conditions, selecting 60 articles after applying a screening methodology during the period 2020-2022. This paper aims to compile and analyze the cutting edge of research in utilizing mechanochemistry for green chemistry applications.
Collapse
Affiliation(s)
- Sergi Arfelis
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- University Pompeu Fabra, Barcelona, Spain
| | - Ana I Martín-Perales
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Departamento de Química Orgánica, Campus Universitario de Rabanales, Edificio Marie Curie C3, Universidad de Córdoba, Crta. Nnal IV-A, km 396, E-14014, Córdoba, Spain
| | - Remy Nguyen
- Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, CNRS, PSL Research University, 11 rue Pierre et Marie Curie, Paris, F-75005, France
| | | | - Igor Cherubin
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Polytechnique Montreal, Département de Génie Chimique, 2500, chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Christophe Len
- Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, CNRS, PSL Research University, 11 rue Pierre et Marie Curie, Paris, F-75005, France
- Université de Technologie de Compiegne, CS 60319, Compiegne Cedex, 60203, France
| | - Irene Malpartida
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Universidad de Málaga, Departamento Química Inorgánica, Cristalografía y Mineralogía, Av. de Cervantes 2, 29016, Málaga, Spain
| | - Alba Bala
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| | - Pere Fullana-I-Palmer
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Yao C, Wang B, Zhang J, Faheem M, Feng Q, Hassan M, Zhang X, Lee X, Wang S. Formation mechanisms and degradation methods of polycyclic aromatic hydrocarbons in biochar: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120610. [PMID: 38581889 DOI: 10.1016/j.jenvman.2024.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.
Collapse
Affiliation(s)
- Canxu Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| |
Collapse
|
3
|
Che N, Qu J, Wang J, Liu N, Li C, Liu Y. Adsorption of phosphate onto agricultural waste biochars with ferrite/manganese modified-ball-milled treatment and its reuse in saline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169841. [PMID: 38215841 DOI: 10.1016/j.scitotenv.2023.169841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024]
Abstract
Agricultural waste biochar was widely used to absorb phosphorus (P) from eutrophicated water and soil remediation. However, the research on the reuse of the sorbed P on biochar in infertile saline soil is insufficient. Biochars derived from four kinds of agricultural wastes (cotton straws from two origins, maize stalk, and rice husk) were modified and applied to adsorb phosphate in waste water and then be reused in saline soil in this study. The co-modified method combining ball milling and metal coated treatment obtained the higher specific surface area (SSA) of ferrite/manganese modified-ball-milled biochars (Fe/Mn-BMBCs) (226.5-331.5 m2 g-1) than that of pristine biochars (14.02-30.35 m2 g-1) and ferrite/manganese modified biochar (Fe/Mn-BC) (223.7 m2 g-1), which could improve the pore structure of metal modified biochar. The phosphate adsorption capacity (qmax) of Fe/Mn-BMBCs with rich functional groups and high SSA were 44.0-53.8 mg g-1, which was 4.47-5.82 times higher than that of pristine biochars. Fe/Mn-BMBCs showed efficiently adsorption performance at low pH and high temperature. The application of BC to saline soil could promote the availability of P in saline soil. P-loaded biochars could afford P as a nutrient to promote the growth of lettuce (Lactuca sativa L.) in saline soil. The lettuce fresh weight in Fe/Mn-BMBC-P2 treated soil was 8.21 times higher than that grew in control check (CK) treatment. As a P element provider, P-loaded biochars not only improve saline soil fertility and crop productivity, but also convert the agricultural wastes and P in eutrophicated waters to the sustainable resource.
Collapse
Affiliation(s)
- Naiju Che
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jie Qu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jiaqi Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Na Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Chengliang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Yanli Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
4
|
Wang B, Zhao C, Feng Q, Lee X, Zhang X, Wang S, Chen M. Biochar supported nanoscale zerovalent iron-calcium alginate composite for simultaneous removal of Mn(II) and Cr(VI) from wastewater: Sorption performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123148. [PMID: 38104766 DOI: 10.1016/j.envpol.2023.123148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Heavy metal pollution in water caused by industrial activities has become a global environmental issue. Among them, manganese mining and smelting activities have caused the combined pollution of Cr(VI) and Mn(II) in water, posing a serious ecotoxicological risk to ecological environments and human health. To efficiently remove Cr(VI) and Mn(II) from wastewater, a novel biochar supported nanoscale zerovalent iron-calcium alginate composite (CA/nZVI/RSBC) was synthesized by liquid-phase reduction and calcium alginate embedding methods. The adsorption performance and mechanisms of Cr(VI) and Mn(II) by CA/nZVI/RSBC were investigated. The maximum adsorption capacities of Cr(VI) and Mn(II) onto CA/nZVI/RSBC fitted by the Langmuir model were 5.38 and 39.78 mg/g, respectively, which were much higher than the pristine biochar. The iron release from CA/nZVI/RSBC was comparatively lower than that of nZVI/RSBC. Mn(II) presence enhanced the reduction of Cr(VI) by CA/nZVI/RSBC. The results of XRD, XPS, and site energy distribution analysis indicated that redox was the predominant mechanism of Cr(VI) adsorption, while electrostatic attraction dominated Mn(II) adsorption. This study provides a novel alternative way for the simultaneous removal of Cr(VI) and Mn(II) in wastewater.
Collapse
Affiliation(s)
- Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Chenxi Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
5
|
Nan H, Yang F, Wang C, Xu X, Qiu H, Cao X, Zhao L. Phosphorus Footprint in the Whole Biowaste-Biochar-Soil-Plant System: Reservation, Replenishment, and Reception. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:166-175. [PMID: 38109361 DOI: 10.1021/acs.jafc.3c05970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Two phosphorus (P)-rich biowastes, sewage sludge (SS) and bone dreg (BD), were selected to clarify P footprints among biowaste, biochar, soil, and plants by introducing a novel "3R" concept model. Results showed that pyrolysis resulted in P transformation from an unstable-organic amorphous phase to a stable-inorganic crystalline phase with a P retention rate of 70-90% in biochar (P reservation). In soil, SSBC released more P in acid red soil and alkaline yellow soil than BDBC, while the opposite result appeared in neutral paddy soil. The P released from SSBC formed AlPO4 by combining with Al in soil, whereas P from BDBC transformed into Ca5(PO4)3F(or Cl) in conjunction with Ca in the soil (P replenishment). Various plants exhibited an uptake of approximately 2-6 times more P from biochar-amended soil than from the original soil (P reception). This study can guide the application of biochar in various soil-plant systems for effective nutrient reclamation.
Collapse
Affiliation(s)
- Hongyan Nan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200240, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| |
Collapse
|
6
|
Ji S, Zhang F, Yao P, Li C, Faheem M, Feng Q, Chen M, Wang B. Optimization of pig manure-derived biochar for ammonium and phosphate simultaneous recovery from livestock wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82532-82546. [PMID: 37326725 DOI: 10.1007/s11356-023-28092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Livestock wastewater has led to serious eco-environmental issues. To effectively treat livestock wastewater and realize the resource utilization of livestock solid waste, manure waste has been widely used to prepare biochar for the recovery of nitrogen and phosphorus. However, fresh biochar has a poor ability to adsorb phosphate due to its negative charge. To overcome the defect, the proportion of biochar samples prepared at 400 °C and 700 °C was optimized under a mass ratio of 2:3 to obtain mixed biochar PM 4-7, achieving the purpose of enhanced ammonium and phosphate recovery in livestock wastewater simultaneously without any modification. The effects of pyrolysis temperature, dosage, and pH were studied, different adsorption models were used to explore the adsorption mechanism, and the effect of biochar loaded with nutrient elements on seed was verified through a seed germination experiment. It was revealed that the maximum removal rates of phosphate and ammonium were 33.88 % and 41.50 %, respectively, endorsing that mixed biochar PM 4-7 can recover nutrients from livestock wastewater, and could be used as a slow-release fertilizer to promote seed germination and growth. This method provides a new potential way for the efficient resource utilization of pig manure and the recovery of nutrients from breeding wastewater.
Collapse
Affiliation(s)
- Sirui Ji
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Fang Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Panpan Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunlan Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, Guizhou, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
7
|
Jellali S, Hadroug S, Al-Wardy M, Al-Nadabi H, Nassr N, Jeguirim M. Recent developments in metallic-nanoparticles-loaded biochars synthesis and use for phosphorus recovery from aqueous solutions. A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118307. [PMID: 37269723 DOI: 10.1016/j.jenvman.2023.118307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) represents a major pollutant of water resources and at the same time a vital element for human and plants. P recovery from wastewaters and its reuse is a necessity in order to compensate the current important depletion of P natural reserves. The use of biochars for P recovery from wastewaters and their subsequent valorization in agriculture, instead of synthetic industrial fertilizers, promotes circular economy and sustainability concepts. However, P retention by pristine biochars is usually low and a modification step is always required to improve their P recovery efficiency. The pre- or post-treatment of biochars with metal salts seems to be one of the most efficient approaches. This review aims to summarize and discuss the most recent developments (from 2020- up to now) in: i) the role of the feedstock nature, the metal salt type, the pyrolysis conditions, and the experimental adsorption parameters on metallic-nanoparticles-loaded biochars properties and effectiveness in recovering P from aqueous solutions, as well as the dominant involved mechanisms, ii) the effect of the eluent solutions nature on the regeneration ability of P-loaded biochars, and iii) the practical challenges facing the upscaling of P-loaded biochars production and valorization in agriculture. This review shows that the synthesized biochars through slow pyrolysis at relatively high temperatures (up to 700-800 °C) of mixed biomasses with Ca- Mg-rich materials or impregnated biomasses with specific metals in order to from layered double hydroxides (LDHs) biochars composites exhibit interesting structural, textural and surface chemistry properties allowing high P recovery efficiency. Depending on the pyrolysis's and adsorption's experimental conditions, these modified biochars may recover P through combined mechanisms including mainly electrostatic attraction, ligand exchange, surface complexation, hydrogen bonding, and precipitation. Moreover, the P-loaded biochars can be used directly in agriculture or efficiently regenerated with alkaline solutions. Finally, this review emphasizes the challenges concerning the production and use of P-loaded biochars in a context of circular economy. They concern the optimization of P recovery process from wastewater in real-time scenarios, the reduction of energy-related biochars production costs and the intensification of communication/dissemination campaigns to all the concerned actors (i.e., farmers, consumers, stakeholders, and policymakers) on the benefits of P-loaded biochars reuse. We believe that this review is beneficial for new breakthroughs on the synthesis and green application of metallic-nanoparticles-loaded biochars.
Collapse
Affiliation(s)
- Salah Jellali
- Centre for Environmental Studies and Research, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Samar Hadroug
- Wastewaters and Environment Laboratory, Water Research and Technologies Centre, Carthage University, Soliman, 2050, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Hamed Al-Nadabi
- Centre for Environmental Studies and Research, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Najat Nassr
- Rittmo Agroenvironnement, ZA Biopôle, 37 Rue de Herrlisheim, CS 80023, F-68025 Colmar Cedex, France.
| | - Mejdi Jeguirim
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, UMR, 7361, F-68100, Mulhouse, France; Institut de Science des Matériaux de Mulhouse (IS2M), Université de Strasbourg, CNRS, UMR, 7361, F-67081, Strasbourg, France.
| |
Collapse
|
8
|
Harindintwali JD, He C, Xiang L, Dou Q, Liu Y, Wang M, Wen X, Fu Y, Islam MU, Chang SX, Kueppers S, Shaheen SM, Rinklebe J, Jiang X, Schaeffer A, Wang F. Effects of ball milling on biochar adsorption of contaminants in water: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163643. [PMID: 37086985 DOI: 10.1016/j.scitotenv.2023.163643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Reckless release of contaminants into the environment causes pollution in various aquatic systems on a global scale. Biochar is potentially an inexpensive and environmentally friendly adsorbent for removing contaminants from water. Ball milling has been used to enhance biochar's functionality; however, global analysis of the effect of ball milling on biochar's capacity to adsorb contaminants in aqueous solutions has not yet been done. Here, we conducted a meta-analysis to investigate the effects of ball milling on the adsorption/removal capacity of biochar for contaminants in aqueous solutions, and to investigate whether ball milling effects are related to biochar production, ball milling, and other experimental variables. Overall, ball milling significantly increased biochar adsorption capacity towards both inorganic and organic contaminants, by 69.9% and 561.9%, respectively. This could be attributed to ball milling increasing biochar surface area by 2.05-fold, pore volume by 2.39-fold, and decreasing biochar pH by 0.83-fold. The positive adsorption effects induced by ball milling varied widely, with the most effective being ball milling for 12 to 24 h at 300 to 400 rpm with a biochar:ball mass ratio of 1:100 on biochars produced at 400-550 °C from wood residues. Based on this meta-analysis, we conclude that ball milling could effectively enhance biochar's ability to remove organic and inorganic contaminants from aquatic systems.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Geographical Sciences, Nantong University, Nantong 226001, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahbub Ul Islam
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Stephan Kueppers
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schaeffer
- RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany; Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich 52428, Germany.
| |
Collapse
|
9
|
Zhao Z, Wang B, Feng Q, Chen M, Zhang X, Zhao R. Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160289. [PMID: 36414073 DOI: 10.1016/j.scitotenv.2022.160289] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
A large amount of wastewater containing nitrogen, phosphorus, and fluorine produces in the production of phosphate fertilizer. In this study, to simultaneously recover nitrogen and phosphorus from phosphorus-containing wastewater and realize the resource utilization of red mud and rape straw, red mud-modified rape straw biochar (RM/RSBC) was prepared by facile one step, and the physicochemical properties were characterized by Zeta potential, SEM-EDS, BET specific surface area (SSA), FTIR, XRD, and XPS. The adsorption performance and mechanisms of ammonium and phosphate onto RM/RSBC were explored through static, fixed-bed column adsorption, and practical wastewater experiments. The results showed that pH = 3.0 and 8.0 were favorable for the removal of phosphate and ammonium, respectively. The main adsorption mechanisms of ammonium and phosphate were the interaction between ammonium and surface functional groups and surface precipitation, respectively. The removal efficiencies of ammonium and phosphate by fixed-bed column adsorption mainly depended on the addition amount of RM/RSBC, the concentration of ammonium and phosphate, and the flow rate. The results of the germination experiment showed that adding > 0.5 wt% of RM/RSBC loaded with ammonium and phosphate promoted the growth of mung beans. This study shows that RM/RSBC can not only recover ammonium and phosphate in wastewater, but also realize the resource utilization of red mud and rape straw.
Collapse
Affiliation(s)
- Zhipeng Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xueyang Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ruohan Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Chen W, Wu Z, Liu C, Zhang Z, Liu X. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114509. [PMID: 36621032 DOI: 10.1016/j.ecoenv.2023.114509] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Bacillus subtilis as microbial fertilizers contribute to avoiding the harmful effects of traditional agricultural fertilizers and pesticides. However, there are many restrictions on the practical application of fertilizers. In this study, microbial biochar formulations (BCMs) were prepared by loading biochar with B. subtilis SL-44. Pot experiments were conducted to evaluate the effects of the BCMs on soil fertility, Fusarium wilt control, and radish plant growth. The application of BCMs dramatically improved soil properties and favored plant growth. Compared with SL-44 and biochar treatments, the BCMs treatments increased radish plant physical-chemical properties and activities of several enzymes in the soil. What's more, Fusarium wilt incidence had decreased by 59.88%. In addition, the BCMs treatments exhibited a significant increase in the abundance of bacterial genera in the rhizosphere soil of radish. Therefore, this study demonstrated that BCMs may be an eco-friendly strategy for improving soil fertility, reducing Fusarium wilt, and promoting radish plant growth.
Collapse
Affiliation(s)
- Wumei Chen
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Changhao Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Ziyan Zhang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| |
Collapse
|
11
|
Wang H, Wen Y, Ding Y, Yue Z, Xu D, Liu Y, Zhang Y, Xu R, Zeng W. Rapid and Effective Lead Elimination Using Cow Manure Derived Biochar: Balance between Inherent Phosphorus Release and Pollutants Immobilization. TOXICS 2022; 11:1. [PMID: 36668727 PMCID: PMC9861172 DOI: 10.3390/toxics11010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cow manure derived biochar (CMBC) can serve as a promising functional material, and CMBC can be regarded as an ecofriendly approach compared to conventional ones. CM bioadsorbent can be employed for heavy metal immobilization (such as for lead) as well as an amendment to increase soil fertility (e.g., phosphorus). Few studies have examined the surface interactions between pollutants and bioadsorbents when inherent nutrient release is present. In this work, CMBC was prepared and applied for Pb(II) removal, and the vital roles of released phosphorus from CMBC were comprehensively disclosed. Furthermore, CMBC could immobilize part of the Pb(II) in soil and promote plant growth. CM400 was an effective adsorbent whose calculated Qe reached 691.34 mg·g-1, and it rapidly adsorbed 98.36 mg·g-1 of Pb(II) within 1 min. The adsorption mechanisms of Pb(II) by CMBC include ion exchange, physical adsorption, electrostatic attraction, chemical precipitation, surface complexation, and cation-π bond interaction. Based on the residual phosphorus content and adsorption effect, complexation rather than the chemical precipitation had a greater contribution toward adsorption. Besides, as the concentration of Pb(II) increased, the main adsorption mechanisms likely transformed from chemical precipitation to ion exchange and complexation. CMBC not only had a good effect on Pb(II) removal in the solution, but also immobilized the Pb(II) in soil to restrain plant uptake as well as promote plant growth. The main novelty of this work is providing more insights to the cow manure bio adsorbent on Pb immobilization and phosphorus release. This study is expected to serve as a basis and reference for analyzing the release effects of inherent nutrients and the interfacial behaviors with heavy metals when using CMBC and other nutrient-rich carbon-based fertilizers for pollution control.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Yi Wen
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Yu Ding
- Baoshan City Longyang Rural Energy Workstation, Baoshan 678000, China
| | - Zhiqiang Yue
- Yuxi Agricultural Environmental Protection and Rural Energy Workstation, Yuxi 653100, China
| | - Dan Xu
- Baoshan City Longyang Rural Energy Workstation, Baoshan 678000, China
| | - Ying Liu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Yong Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, China
| | - Weiqing Zeng
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
- Yuxi Agricultural Environmental Protection and Rural Energy Workstation, Yuxi 653100, China
| |
Collapse
|