1
|
Sahoo GP, Pattnaik A, Kumar V, Jena G. Low-dose bisphenol A plus arsenite: Continuous or intermittent exposures in Sprague-Dawley rats; Effects on kidney oxidative stress, DNA damage, ferroptosis, and fibrosis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 904:503871. [PMID: 40382190 DOI: 10.1016/j.mrgentox.2025.503871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Arsenic and bisphenol A (BPA) are widespread environmental pollutants. We have studied the nephrotoxicity of arsenite (ARS), 10 mg/L in drinking water, plus BPA, 50 µg/kg oral dose, in juvenile Sprague-Dawley rats. Animals were randomized into seven groups and exposed to the chemicals either continuously or intermittently, for 8 weeks. The parameters evaluated were urine biomarkers, histopathological and transmission electron microscopic (TEM) examinations, DNA damage (halo assay), and protein expressions. Continuous exposure to AS and BPA significantly increased urinary creatinine, albumin, and total protein, and decreased blood urea nitrogen (BUN). Histopathological and TEM data showed brush border detachment, iron accumulation, podocyte injury, increased slit diaphragm space, and collagen deposition in both exposure groups. Significantly greater DNA damage was seen in the combined-exposure group than in the other experimental groups. Combination exposure in the continuous and intermittent groups showed renal fibrosis and ferroptosis and gene expression analysis revealed a significant increase in Bax and decrease in SIRT 1. Combination exposure was more harmful than the individual exposures in causing kidney injury in these animals.
Collapse
Affiliation(s)
- Girija Prasanna Sahoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India.
| | - Asutosh Pattnaik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India.
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India.
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
2
|
Luo D, Luo G, Xu H, Li K, Li Z, Zhang C. Inorganic dietary nanoparticles in intestinal barrier function of inflammatory bowel disease: allies or adversaries? Front Immunol 2025; 16:1563504. [PMID: 40270957 PMCID: PMC12014688 DOI: 10.3389/fimmu.2025.1563504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Inorganic dietary nanoparticles (IDNPs) are frequently utilized as food additives and in packaging, resulting in their exposure becoming a substantial yet often overlooked concern for patients with inflammatory bowel disease (IBD). Considering that impaired intestinal barrier function plays a central role in the pathogenesis of IBD, this review concentrates on the roles and mechanisms of IDNPs in the intestinal barrier (physical, chemical, biological, and immune barriers) of IBD patients. Previous studies have shown that different types of nanoparticles have varying effects on animals in diverse states. In this context, factors such as the source, size, shape, dosage, and duration of action of the nanoparticles, as well as the species, gender, dietary habits, and age of the animals, significantly influence research outcomes. Future studies should undertake more comprehensive explorations into the effects and mechanisms of IDNPs with diverse sources and properties in IBD patients.
Collapse
Affiliation(s)
- Duo Luo
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guifang Luo
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kangbao Li
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaotao Li
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan, China
| | - Cong Zhang
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
3
|
Feng Y, Li L, Ma Q, Liu S, Wang P, Li X, Ma J. Effect of microcystin-LR on intestinal microbiota, metabolism, and health of zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178838. [PMID: 39946873 DOI: 10.1016/j.scitotenv.2025.178838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Microcystin-LR (MC-LR) is typically produced along with the occurrence of cyanobacterial blooms, potentially exerting deleterious effects on intestinal microbiota and health in aquatic animals. To date, the underlying mechanism by which MC-LR affects intestinal health remains elusive. In this study, adult male zebrafish were exposed to MC-LR to assess its impact on the microbiome and metabolome. Histopathological and biochemical results indicated that MC-LR damaged intestinal villi and epithelial cells, induced intestinal barrier injury and inflammatory response. Metabolomics results revealed that MC-LR induced amino acid, carbohydrate, lipid, energy metabolisms dysbiosis, and specifically promoted glycine, serine and threonine metabolism. Metagenomics results demonstrated that MC-LR altered the composition of intestinal microbiota, and microbial function prediction suggested that MC-LR promoted the functions associated with amino acid, lipid, carbohydrate and energy metabolisms. Multiomics and Metorigin analyses jointly confirmed that glycine, serine and threonine metabolism was predominantly regulated by dominant Proteobacteria, Firmicutes, Fusobacteriota and Bacteroidota under MC-LR stress. This study offers a comprehensive perspective on the toxicity of microbiota and microbiota-derived metabolism in fish intestines induced by MC-LR and deepens our comprehension of the disruptive influence of MC-LR on intestinal homeostasis in organisms.
Collapse
Affiliation(s)
- Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Liuying Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
| | - Qingping Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shangwu Liu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Panliang Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China; Pingyuan Laboratory, Xinxiang 453007, China.
| |
Collapse
|
4
|
Espada-Bernabé E, Moreno-Martín G, Gómez-Gómez B, Madrid Y. In vitro gastrointestinal stability and Caco-2 cell cytotoxicity of TiO 2 and SiO 2 (nano)particles from confectionary products. Food Res Int 2025; 202:115754. [PMID: 39967070 DOI: 10.1016/j.foodres.2025.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
The effect of an in vitro gastrointestinal assay on the characteristics of nanoparticles from food additives TiO2 (E171) and SiO2 (E551) present in confectionaries was determined by spICP-MS. No significant differences were detected in particle size distribution regardless of the phase of the in vitro stage and the confectionary products, with particles present as aggregates/ agglomerates. The percentage of TiO2 as nanoparticle form was found to be less than 50 % during the in vitro gastrointestinal digestion process, whereas SiO2 nanoparticles could not be detected due to the high LOD in size obtained (142 nm). The bioaccessible fractions of intestinal extracts showed a 5 % content for both particle types, suggesting their limited absorption in the body. MTT cytotoxicity assay with Caco-2 cells exposed to gastrointestinal extracts from confectionery products revealed an average cytotoxic effect of 40 % for all products tested which was attributed to the food matrix components rather than (nano)particles.
Collapse
Affiliation(s)
- Elena Espada-Bernabé
- Analytical Chemistry Department. Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Gustavo Moreno-Martín
- Analytical Chemistry Department. Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Beatriz Gómez-Gómez
- Analytical Chemistry Department. Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Yolanda Madrid
- Analytical Chemistry Department. Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Zhang M, Zhang R, Kong Y, Li J, Wang G, Wu D, Lan H, Wu M. Microplastics Exposure Causes the Growth Hormone Resistance on the Stem Cell. J Biochem Mol Toxicol 2025; 39:e70176. [PMID: 39959945 DOI: 10.1002/jbt.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 05/09/2025]
Abstract
With the large range of applications for plastic products, the potential hazards of polystyrene microplastics (PS-MPs) as a hazardous substance have been widely concerned. Mesenchymal stem cells (MSCs) are important cells in the body with high self-renewal ability, multidirectional differentiation potential and low immunogenicity. Growth hormone (GH) has important biological regulatory effects on MSCs. However, the toxicological effects of PS-MPs on the role of GH in hMSCs are unclear yet. In this work, we explored the effects of PS-MPs on the biological activity of GH in hMSCs. Initially, we conducted experiments to investigate the cellular behavior of GH in hMSCs. It is noteworthy that poststimulation with PS-MPs, there was a significant reduction in the quantity of GH entering the cytoplasm, with almost negligible distribution observed in the cell nucleus. Consequently, we proceeded to examine the GH/GHR-mediated signaling pathways. The data revealed that poststimulation with PS-MPs, the downstream signaling pathways, including JAK2-STATs1/3/5, were significantly downregulated. To elucidate this intriguing finding, we delved further into the molecular mechanisms underlying the desensitization of GH/GHR signaling induced by PS-MPs. Experimental data demonstrated that the entry of PS-MPs into the cells resulted in a significant increase in intracellular reactive oxygen species (ROS), leading to cellular senescence. In summary, PS-MPs may induce desensitization of GH signaling in hMSCs through the ROS-induced cellular senescence. This study provides crucial insights into the biological effects of PS-MPs on the GH bioactivity in hMSCs.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ruoting Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuebing Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiawen Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Li K, Zhou Z, Cao Y. Effects of orally exposed SiO 2 nanoparticles on lipid profiles in gut-liver axis of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117580. [PMID: 39708451 DOI: 10.1016/j.ecoenv.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Recently we proposed the possibility of orally exposed nanoparticles (NPs) to alter metabolite homeostasis by changing metabolism pathways, in addition to intestinal damages, but relatively few studies investigated the changes of metabolite profiles in multi-organs. This study investigated the influences of orally exposed SiO2 NPs on lipid profiles in gut-liver axis. To this end, we treated mice with 16, 160 or 1600 mg/kg bodyweight SiO2 NPs via intragastric route. After 5 days exposure (once a day), we observed that SiO2 NPs induced minimal pathological changes but increased most of the trace elements. Furthermore, lipid staining was gradually decreased in intestines and livers with the increase of NP levels. Consistently, lipidomics results showed that most of the lipid classes in mouse intestines and livers were decreased following SiO2 NP administration. We further identified the lipid classes significantly decreased in both intestines and livers, such as phosphatidylserine (PS), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE). Only a few lipid classes, such as anandamide, showed opposite trends in these organs. For metabolism pathway, SiO2 NPs suppressed autophagy, showing as a significant decrease of microtubule-associated protein 1 A/1B light chain 3 (LC3) and adipose triglyceride lipase (Atgl), accompanying with an accumulation of P62, in both intestines and livers. However, lysosomal-associated membrane protein 2 (Lamp2) showed different trend, that it was significantly increased in intestines but decreased in livers. Combined, our results indicated that intragastric administration of SiO2 NPs altered trace element balance and lipid profiles, accompanying with a change of autophagic lipolysis proteins, in mouse gut-liver axis.
Collapse
Affiliation(s)
- Kuanhang Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhengzheng Zhou
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Ouwehand J, Peijnenburg WJGM, Vijver MG. Microbial function matters: Microbiome-aware nano-ecotoxicology needs functional endpoints besides compositional data. CHEMOSPHERE 2024; 369:143905. [PMID: 39643017 DOI: 10.1016/j.chemosphere.2024.143905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The microbiome provides an active barrier to the external environment and aids in the metabolism of the host. Nanomaterials are known to interact with this microbiome host plane. Given the recent advances in techniques to study the microbiome, there has been a vast increase in studies trying to find causality in host response via the microbiome in nano-ecotoxicology. Our review integrates the latest advancements in understanding the microbiome's role in elucidating host health related to nanomaterial exposure, thereby explicitly emphasizing the gap between compositional and functional studies. Both the techniques used to interfere and the current understanding of microbiome-host relationships in nano-ecotoxicology are discussed. To further highlight the functional side of the microbiome, we performed an explorative meta-analysis to bridge the gap between top-down and bottom-up studies. This review gives a perspective on generalising microbiome-aware nano-ecotoxicology and discusses methodologies to enhance the interpretation of nanomaterial or chemical exposure to host-microbiome interactions. The current study discloses that correlations built on compositional data are not a good proxy for host outcome and more in-depth analysis coupled with functional analysis should be explored more in microbiome-aware nano-ecotoxicology.
Collapse
Affiliation(s)
- Jesse Ouwehand
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, 2300, RA, the Netherlands
| |
Collapse
|
8
|
Zhou J, Hu J, Liu J, Zhang W. Elucidating the gastroprotective mechanisms of Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb through UHPLC-MS/MS and systems network pharmacology. Sci Rep 2024; 14:27815. [PMID: 39537788 PMCID: PMC11560922 DOI: 10.1038/s41598-024-79483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb., commonly known as BaiMaoGen (BMG), a medicinal and edible traditional Chinese medicinal (TCM) herb commonly used in health supplements, has been observed to offer protective effects against gastrointestinal disorders. However, the specific bioactive compounds and their molecular mechanisms have not been fully elucidated. This study employed ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and systematic network pharmacology to analyze and identify the key active components and their interactions with biological targets. Thirty-six main active compounds, including 3,4-dihydroxybenzoic acid and p-hydroxybenzoic acid, were identified and analyzed for their interaction with key protein targets using molecular docking and dynamic simulations. This combined approach highlighted the therapeutic pathways involved, particularly the PI3K/AKT signaling pathways, providing new insights into the molecular basis of BMG's gastroprotective effects. Our findings suggested that BMG's complex multi-target action can potentially be harnessed to develop effective treatments for gastrointestinal toxicity.
Collapse
Affiliation(s)
- Jiaxin Zhou
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jianping Hu
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiancheng Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Wenchun Zhang
- School of life science, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
9
|
Wang C, Liu Y, He Y, Li J, Cao Y. Combined effects of TiO 2 nanoparticle and fipronil co-exposure on microbiota in mouse intestine. Food Chem Toxicol 2024; 192:114931. [PMID: 39142555 DOI: 10.1016/j.fct.2024.114931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Oral exposure to nanoparticles (NPs) may affect intestinal microbiota, and this effect may be further changed by co-contaminates. In the present study, we investigated the combined effects of TiO2 NPs and fipronil (FPN) on microbiota in mouse intestines. Mice were intragastric exposed to 5.74 mg/kg TiO2 NPs, 2.5 mg/kg FPN, or both of them, once a day, for 30 days. The results showed that individual exposure to TiO2 NPs or FPN decreased body weight and induced pathological changes in intestines. The exposure was also associated with increased cleaved caspase-3 protein, oxidative stress and decreased tight junction protein expression. Furthermore, the levels of diamine oxidase (DAO), lipopolysaccharide (LPS) and inflammatory cytokines in serum were also elevated, indicating increased intestinal barrier permeability. As expected, both TiO2 NPs and FPN decreased the diversity and altered the composition of microbiota. However, the observed effects were not further enhanced after the co-exposure to TiO2 NPs and FPN, except that Romboutsia was only significantly increased after the co-exposure to TiO2 NPs + FPN. We concluded that oral exposure to TiO2 NPs and FPN showed minimal synergistic effects on microbiota in mouse intestine.
Collapse
Affiliation(s)
- Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanxin Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yayu He
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
10
|
Li W, Zhan M, Wen Y, Chen Y, Zhang Z, Wang S, Tian D, Tian S. Recent Progress of Oral Functional Nanomaterials for Intestinal Microbiota Regulation. Pharmaceutics 2024; 16:921. [PMID: 39065618 PMCID: PMC11280463 DOI: 10.3390/pharmaceutics16070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota is closely associated with human health, and alterations in gut microbiota can influence various physiological and pathological activities in the human body. Therefore, microbiota regulation has become an important strategy in current disease treatment, albeit facing numerous challenges. Nanomaterials, owing to their excellent protective properties, drug release capabilities, targeting abilities, and good biocompatibility, have been widely developed and utilized in pharmaceuticals and dietary fields. In recent years, significant progress has been made in research on utilizing nanomaterials to assist in regulating gut microbiota for disease intervention. This review explores the latest advancements in the application of nanomaterials for microbiota regulation and offers insights into the future development of nanomaterials in modulating gut microbiota.
Collapse
Affiliation(s)
- Wanneng Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Zhongchao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Malaisé Y, Casale E, Pettes-Duler A, Cartier C, Gaultier E, Martins Breyner N, Houdeau E, Evariste L, Lamas B. Validating Enteroid-Derived Monolayers from Murine Gut Organoids for Toxicological Testing of Inorganic Particles: Proof-of-Concept with Food-Grade Titanium Dioxide. Int J Mol Sci 2024; 25:2635. [PMID: 38473881 DOI: 10.3390/ijms25052635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Human exposure to foodborne inorganic nanoparticles (NPs) is a growing concern. However, identifying potential hazards linked to NP ingestion often requires long-term exposure in animals. Owing these constraints, intestinal organoids are a promising alternative to in vivo experiments; as such, an in vitro approach should enable a rapid and reliable assessment of the effects of ingested chemicals on the gut. However, this remains to be validated for inorganic substances. In our study, a transcriptomic analysis and immunofluorescence staining were performed to compare the effects of food-grade TiO2 (fg-TiO2) on enteroid-derived monolayers (EDMs) from murine intestinal organoids to the known impacts of TiO2 on intestinal epithelium. After their ability to respond to a pro-inflammatory cytokine cocktail was validated, EDMs were exposed to 0, 0.1, 1, or 10 µg fg-TiO2/mL for 24 h. A dose-related increase of the muc2, vilin 1, and chromogranin A gene markers of cell differentiation was observed. In addition, fg-TiO2 induced apoptosis and dose-dependent genotoxicity, while a decreased expression of genes encoding for antimicrobial peptides, and of genes related to tight junction function, was observed. These results validated the use of EDMs as a reliable model for the toxicity testing of foodborne NPs likely to affect the intestinal barrier.
Collapse
Affiliation(s)
- Yann Malaisé
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Eva Casale
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Aurélie Pettes-Duler
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Christel Cartier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Eric Gaultier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Natalia Martins Breyner
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Eric Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Lauris Evariste
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Bruno Lamas
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| |
Collapse
|
12
|
Chen X, Wu J, Fu X, Wang P, Chen C. Fructus mori polysaccharide alleviates diabetic symptoms by regulating intestinal microbiota and intestinal barrier against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 249:126038. [PMID: 37516223 DOI: 10.1016/j.ijbiomac.2023.126038] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Fructus mori polysaccharide (FMP) has a variety of biological activities. In this study, the results showed that FMP alleviated hyperglycemia, insulin resistance, hyperlipidemia, endotoxemia, and high metabolic inflammation levels in type 2 diabetic (T2DM) mice. Next, it was found that the above beneficial effects of FMP on diabetic mice were significantly attenuated after antibiotics eliminated intestinal microbiota (IM) of mice. In addition, FMP suppressed intestinal inflammation and oxidative stress levels by inhibiting the activation of the TLR4/MyD88/NF-κB pathway, and indirectly upregulated the expression of the tight junction proteins Claudin-1, Occludin, and Zonula occlusionn-1 (ZO-1) to repair the intestinal barrier. Interestingly, the protective effect of FMP on the intestinal barrier was also attributed to its regulation of IM. The 16S rRNA and Spearman correlation analysis showed that FMP could repair the intestinal barrier to improve T2DM by remodeling specific IM, especially by significantly inhibiting 93.66 % of endotoxin-producing Shigella and promoting the proliferation of probiotic Allobaculum and Bifidobacterium by 16.31 % and 19.07 %, respectively. This study provided a theoretical support for the application of FMP as a novel probiotic in functional foods for diabetes.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Junlin Wu
- Guangzhou Wondfo Health Science and Technology Co., Ltd, China.
| | - Xiong Fu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Pingping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
13
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
14
|
Wu D, Zhou H, Hu Z, Ai F, Du W, Yin Y, Guo H. Multiple effects of ZnO nanoparticles on goldfish (Carassius auratus): Skin mucus, gut microbiota and stable isotope composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121651. [PMID: 37062409 DOI: 10.1016/j.envpol.2023.121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The skin and the gut are direct target tissues for nanoparticles, yet attention to effects of metal-based nanoparticles (MNPs) on these two and the discrepancy in these effects remain inadequate. Here, effects of ZnO nanoparticles (nZnO) on skin mucus and gut microbiota of goldfish (Carassius auratus) were investigated, as well as further elements turnover and metabolic variations. After 14 days of exposure, considerable variations in levels of biomarkers (protein, glucose, lysozyme and immunoglobulin M) in skin mucus demonstrated significant stress responses to nZnO. nZnO exposure significantly reduced the abundance of Cetobacterium in the gut while increased that of multiple pathogens, and further leading to down-regulation of pathways such as carbohydrate metabolism, translation, and replication and repair. Decreased δ15N values indicated declined N turnover in vivo, further demonstrating the negative effect of nZnO on metabolism in the organism. Integration analysis of each biomarker using the biomarker response index version 2 (IBRv2) revealed concentration-dependent effects of nZnO on skin mucus, while effects on physiology in vivo was not, demonstrating the discrepancy in the toxicity pathways and toxic effects of nZnO on different tissues. This work improved our understanding about the comprehensive toxicity of nZnO on aquatic organism.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hailing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zixuan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Jia M, Yi B, Chen X, Xu Y, Xu X, Wu Z, Ji J, Tang J, Yu D, Zheng Y, Zhou Q, Zhao Y. Carbon dots induce pathological damage to the intestine via causing intestinal flora dysbiosis and intestinal inflammation. J Nanobiotechnology 2023; 21:167. [PMID: 37231475 PMCID: PMC10210306 DOI: 10.1186/s12951-023-01931-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Carbon dots (CDs), as excellent antibacterial nanomaterials, have gained great attention in treating infection-induced diseases such as periodontitis and stomatitis. Given the eventual exposure of CDs to the intestine, elucidating the effect of CDs on intestinal health is required for the safety evaluation of CDs. RESULTS Herein, CDs extracted from ε-poly-L-lysine (PL) were chosen to explore the modulation effect of CDs on probiotic behavior in vitro and intestinal remodeling in vivo. Results verify that PL-CDs negatively regulate Lactobacillus rhamnosus (L. rhamnosus) growth via increasing reactive oxygen species (ROS) production and reducing the antioxidant activity, which subsequently destroys membrane permeability and integrity. PL-CDs are also inclined to inhibit cell viability and accelerate cell apoptosis. In vivo, the gavage of PL-CDs is verified to induce inflammatory infiltration and barrier damage in mice. Moreover, PL-CDs are found to increase the Firmicutes to Bacteroidota (F/B) ratio and the relative abundance of Lachnospiraceae while decreasing that of Muribaculaceae. CONCLUSION Overall, these evidences indicate that PL-CDs may inevitably result in intestinal flora dysbiosis via inhibiting probiotic growth and simultaneously activating intestinal inflammation, thus causing pathological damage to the intestine, which provides an effective and insightful reference for the potential risk of CDs from the perspective of intestinal remodeling.
Collapse
Affiliation(s)
- Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
| | - Xian Chen
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yongzhi Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Xinkai Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Zhaoxu Wu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
- School of Stomatology, Qingdao University, Qingdao, 266003 China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000 Zhejiang China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
16
|
Chen L, Wang S, Zhang Y, Li Y, Zhang X, Ma J, Zou X, Yao T, Li S, Chen J, Zhou H, Wu L, Zhou Y, Zhang L. Multi-omics reveals specific host metabolism-microbiome associations in intracerebral hemorrhage. Front Cell Infect Microbiol 2022; 12:999627. [PMID: 36619742 PMCID: PMC9813413 DOI: 10.3389/fcimb.2022.999627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke, but effective prevention and treatment strategies are lacking. Recently, gut microbiome and its metabolitesis are considered to be an influencing factor of stroke. However, little is known about the effects of the gut microbiome on ICH and host metabolic activity. Therefore, we used 16S sequencing, macrogenomics sequencing and untargeted metabolomics to explore the differences in gut microbial-metabolome interactions between patients with intracerebral hemorrhage and healthy control populations. We found a significant decrease in the phylum of Firmicutes and a significant increase of Bacteroidetes in ICH patients. At the genus level, Streptococcus, Bifidobacterium, Akkermansia, and Lactobacillus were more abundant in ICH patients. Macrogenomic analysis revealed active glycosaminoglycan degradation, heme synthesis, galactose degradation, lipopolysaccharide core region synthesis, and beta-Lactam resistance in ICH patients. Serum untargeted metabolomic analysis combined with ROC curves showed that octanoylcarnitine, decanoylcarnitine, dodecanoylcarnitine, glyceric acid, pyruvic acid, aspartic acid, methylcysteine, pyroglutamic acid, 9E-tetradecenoic acid, N-Acetylneuraminic acid, and aconitic acid were the best markers for the diagnosis of ICH. Correlation analysis showed that microbiome enriched in the gut of ICH patients were significantly correlated with serum metabolites, revealing a close correlation between the gut microbiome of ICH patients and the host metabolome, and significant differences from the healthy population. microbiota-host co-metabolites including pyruvic acid and 9E-tetradecenoic acid is associated with the the National Institutes of Health Stroke Scale (NIHSS) scores. In conclusion, microbiome-related metabolites in ICH patients was associated with the severity of ICH, the microbiota-host co-metabolites may be a potential may be potential therapeutic targets.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sai Wang
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yupeng Zhang
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ye Li
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangbin Zhang
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyi Ma
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuelun Zou
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - TianXing Yao
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Li
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyou Chen
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huifang Zhou
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianxu Wu
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Le Zhang, ; Yanhong Zhou,
| | - Le Zhang
- Department of Neurology, Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Le Zhang, ; Yanhong Zhou,
| |
Collapse
|
17
|
Issa M, Rivière G, Houdeau E, Adel-Patient K. Perinatal exposure to foodborne inorganic nanoparticles: A role in the susceptibility to food allergy? FRONTIERS IN ALLERGY 2022; 3:1067281. [PMID: 36545344 PMCID: PMC9760876 DOI: 10.3389/falgy.2022.1067281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Food allergy (FA) is an inappropriate immune response against dietary antigens. Various environmental factors during perinatal life may alter the establishment of intestinal homeostasis, thereby predisposing individuals to the development of such immune-related diseases. Among these factors, recent studies have emphasized the chronic dietary exposure of the mother to foodborne inorganic nanoparticles (NP) such as nano-sized silicon dioxide (SiO2), titanium dioxide (TiO2) or silver (Ag). Indeed, there is growing evidence that these inorganic agents, used as food additives in various products, as processing aids during food manufacturing or in food contact materials, can cross the placental barrier and reach the developing fetus. Excretion in milk is also suggested, hence continuing to expose the neonate during a critical window of susceptibility. Due to their immunotoxical and biocidal properties, such exposure may disrupt the host-intestinal microbiota's beneficial exchanges and may interfere with intestinal barrier and gut-associated immune system development in fetuses then the neonates. The resulting dysregulated intestinal homeostasis in the infant may significantly impede the induction of oral tolerance, a crucial process of immune unresponsiveness to food antigens. The current review focuses on the possible impacts of perinatal exposure to foodborne NP during pregnancy and early life on the susceptibility to developing FA.
Collapse
Affiliation(s)
- Mohammad Issa
- Département Médicaments et Technologies Pour la Santé (MTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Gilles Rivière
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES, Agence Nationale De Sécurité Sanitaire De l’alimentation, De l’environnement et du Travail), Direction de l’Evaluation des Risques, Maisons-Alfort, France
| | - Eric Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Karine Adel-Patient
- Département Médicaments et Technologies Pour la Santé (MTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Xie L, Li Q, Liao Y, Huang Z, Liu Y, Liu C, Shi L, Li Q, Yuan M. Toxicity Analysis of Mesoporous Polydopamine on Intestinal Tissue and Microflora. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196461. [PMID: 36234997 PMCID: PMC9571127 DOI: 10.3390/molecules27196461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
As a promising therapy, photothermal therapy (PTT) converts near-infrared (NIR) light into heat through efficient photothermal agents (PTAs), causing a rapid increase in local temperature. Considering the importance of PTAs in the clinical application of PTT, the safety of PTAs should be carefully evaluated before their widespread use. As a promising PTA, mesoporous polydopamine (MPDA) was studied for its clinical applications for tumor photothermal therapy and drug delivery. Given the important role that intestinal microflora plays in health, the impacts of MPDA on the intestine and on intestinal microflora were systematically evaluated in this study. Through biological and animal experiments, it was found that MPDA exhibited excellent biocompatibility, in vitro and in vivo. Moreover, 16S rRNA analysis demonstrated that there was no obvious difference in the composition and classification of intestinal microflora between different drug delivery groups and the control group. The results provided new evidence that MPDA was safe to use in large doses via different drug delivery means, and this lays the foundation for further clinical applications.
Collapse
Affiliation(s)
- Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Qiyan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Yingying Liao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Yulin Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Chutong Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| |
Collapse
|
19
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
20
|
A polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus. Int J Biol Macromol 2022; 214:312-323. [PMID: 35714869 DOI: 10.1016/j.ijbiomac.2022.06.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus is a global disease that endangers human health, and the need for the development of nontoxic treatment candidates is urgent. In the present work, one homogeneous polysaccharide from Inonotus obliquus (IN) was isolated, and the protective effect and mechanism of IN on type 2 diabetes mellitus were investigated from the aspects of the intestinal barrier. IN mainly consisted of 9 monosaccharides with a Mw of 373 kDa. IN attenuated body weight loss, alleviated pathological damage, and suppressed the production of proinflammatory cytokines. Additionally, IN repaired the intestinal barrier by upregulating the expression of Ki-67, ZO-1 and MUC2. Furthermore, the abundance of Firmicutes was significantly increased with IN treatment, while the levels of Bacteroidetes were significantly inhibited. In conclusion, IN protected against type 2 diabetes mellitus by ameliorating intestinal barrier dysfunction and might serve as a novel drug candidate for type 2 diabetes mellitus.
Collapse
|