1
|
Senila M, Kovacs E. Use of diffusive gradients in thin-film technique to predict the mobility and transfer of nutrients and toxic elements from agricultural soil to crops-an overview of recent studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34817-34838. [PMID: 38739340 PMCID: PMC11136807 DOI: 10.1007/s11356-024-33602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
The purpose of this review was to survey the recent applications of the diffusive gradients in thin films (DGT) technique in the assessment of mobility and bioavailability of nutrients and potentially toxic elements (PTEs) in agricultural soil. Many studies compared the capabilities of the DGT technique with those of classical soil chemical extractants used in single or sequential procedures to predict nutrients and PTE bioavailability to crops. In most of the published works, the DGT technique was reported to be superior to the conventional chemical extraction and fractionation methods in obtaining significant correlations with the metals and metalloids accumulated in crops. In the domain of nutrient bioavailability assessment, DGT-based studies focused mainly on phosphorous and selenium labile fraction measurement, but potassium, manganese, and nitrogen were also studied using the DGT tool. Different DGT configurations are reported, using binding and diffusive layers specific for certain analytes (Hg, P, and Se) or gels with wider applicability, such as Chelex-based binding gels for metal cations and ferrihydrite-based hydrogels for oxyanions. Overall, the literature demonstrates that the DGT technique is relevant for the evaluation of metal and nutrient bioavailability to crops, due to its capacity to mimic the plant root uptake process, which justifies future improvement efforts.
Collapse
Affiliation(s)
- Marin Senila
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania.
| | - Eniko Kovacs
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Yin M, Zhang X, Li F, Yan X, Zhou X, Ran Q, Jiang K, Borch T, Fang L. Multitask Deep Learning Enabling a Synergy for Cadmium and Methane Mitigation with Biochar Amendments in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1771-1782. [PMID: 38086743 DOI: 10.1021/acs.est.3c07568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Biochar has demonstrated significant promise in addressing heavy metal contamination and methane (CH4) emissions in paddy soils; however, achieving a synergy between these two goals is challenging due to various variables, including the characteristics of biochar and soil properties that influence biochar's performance. Here, we successfully developed an interpretable multitask deep learning (MTDL) model by employing a tensor tracking paradigm to facilitate parameter sharing between two separate data sets, enabling a synergy between Cd and CH4 mitigation with biochar amendments. The characteristics of biochar contribute similar weightings of 67.9% and 62.5% to Cd and CH4 mitigation, respectively, but their relative importance in determining biochar's performance varies significantly. Notably, this MTDL model excels in custom-tailoring biochar to synergistically mitigate Cd and CH4 in paddy soils across a wide geographic range, surpassing traditional machine learning models. Our findings deepen our understanding of the interactive effects of Cd and CH4 mitigation with biochar amendments in paddy soils, and they also potentially extend the application of artificial intelligence in sustainable environmental remediation, especially when dealing with multiple objectives.
Collapse
Affiliation(s)
- Mengmeng Yin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, Henan, China
| | - Xin Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, Henan, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiliang Yan
- Institute of Environmental Research at Great Bay, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Institute of Environmental Research at Great Bay, Guangzhou University, Guangzhou 510006, China
| | - Qiwang Ran
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kai Jiang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, Henan, China
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Senila M, Resz MA, Senila L, Torok I. Application of Diffusive Gradients in Thin-films (DGT) for assessing the heavy metals mobility in soil and prediction of their transfer to Russula virescens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168591. [PMID: 37972786 DOI: 10.1016/j.scitotenv.2023.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Although edible mushrooms are considered a source of many beneficial nutrients for human, they can also represent a risk to health due to their capacity to accumulate heavy metals. In this study, the total dissolved in soil solution and labile concentrations of heavy metals (Cd, Pb, Cu, Zn, Co, Cr, Mn, Ni, and Fe) in soil were measured and correlated with their concentrations accumulated in Russula virescens wild mushrooms. The diffusive gradient in thin films (DGT) technique was used to measure the labile metals content in the soil (CDGT), and corroborated with the metals concentrations in soil solution (Csoln) was used to calculate an R-value, which can estimate the metals resupply from soil solid phase when they are uptake by mushroom. The DGT-labile metal concentrations decreased in the order Mn > Fe > Zn > Cu > Co > Ni > Cd ≅ Pb > Cr. The R-values, calculated as the ratio between CDGT and Csoln decreased in the order: Cd (0.50) > Zn (0.37) > Pb (0.33) > Cu (0.24) ≅ Ni (0.24) ≅ Co (0.23) > Mn (0.16) > Fe (0.12) > Cr (0.04). For the first time, we compared the R-values with the bioaccumulation factors (BAFs) in mushrooms, and it was observed that, a similar increasing trend of BAFs with the R-values exists, thus the capacity of the soil solid phase to fast re-supply metals to soil solution increases BAFs. Although the soil samples were not contaminated with heavy metals above the legislative limits, the concentrations of heavy metals accumulated in mushrooms were high enough to pose risks for humans, mainly for children, due to their Cu content.
Collapse
Affiliation(s)
- Marin Senila
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania.
| | - Maria-Alexandra Resz
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| | - Lacrimioara Senila
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| | - Iulia Torok
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Lv Y, Kuang J, Ding Z, Li R, Shi Z. Soil moisture dynamics regulates the release rates and lability of copper in contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168525. [PMID: 37967635 DOI: 10.1016/j.scitotenv.2023.168525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
The climate changes have caused more extreme precipitation and drought events in the field and have exacerbated the severity of wet-dry events in soils, which will inevitably lead to severe fluctuations in soil moisture content. Soil moisture content has been recognized to influence the distribution of heavy metals, but how temporal changes of soil moisture dynamics affect the release rates and lability of heavy metals is still poorly understood, which precludes accurate prediction of environmental behavior and environmental risk of heavy metals in the field. In this study, we combined experimental and modeling approaches to quantify copper release rates and labile copper fractions in two paddy soils from southern China under different moisture conditions. Our kinetic data and models showed that the release rates and lability of copper were highly associated with the soil moisture contents, in which, surprisingly, high soil moisture contents effectively reduced the release rates of copper even with little changes in the reactive portions of copper in soils. A suite of comprehensive characterization on soil solid and solution components along the incubation suggested that soil microbes may regulate soil copper lability through forming microbially derived organic matter that sequestered copper and by increasing soil particle aggregation for protecting copper from release. This study highlights the importance of incorporating soil moisture dynamics into future environmental models. The experimental and modeling approaches in this study have provided basis for further developing predictive models applicable to paddy soils with varying soil moisture under the impact of climate change.
Collapse
Affiliation(s)
- Yijin Lv
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jialiang Kuang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zecong Ding
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Rong Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China.
| |
Collapse
|
5
|
Xia R, Zhou J, Sun Y, Zeng Z, Liu H, Cui H, Yan J, Kou L, Hu K, Zhang H, Zhou J. Stable Isotope Ratios Trace the Rice Uptake of Cadmium from Atmospheric Deposition via Leaves and Roots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16873-16883. [PMID: 37874039 DOI: 10.1021/acs.est.3c04820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cadmium (Cd) stable isotopes provide a novel technique to investigate the fate of Cd in the environment, but challenges exist for tracing the sources in the plants. We performed individual rice leaf and root exposures to dry and wet deposition using customized open-top chambers (OTCs) in the greenhouse and in the field next to a smelter, respectively. The field experiment also included a control without Cd deposition and a "full" treatment. The exposure experiments and isotope signatures showed that leaves can directly take up atmospheric Cd and then translocate within rice plants to other tissues, contributing 52-70% of Cd in grains, which exceeded the contribution (30-48%) by root exposure. The Cd isotopes in leaves, nodes, internodes, and grains demonstrate that roots preferentially take up Cd from wet deposition, but leaves favor uptake of Cd from dry deposition. The Cd uptake by leaves is redistributed via nodes, allowing for upward transport to the grains but preventing downward transport to the roots. Leaves favor uptake of heavy isotopes from atmospheric deposition (ΔCd114/110Leaf-Dust: 0.10 ± 0.02‰) but retain light isotopes and transport heavy isotopes to the nodes and further to grains. These findings highlight the contribution of atmospheric deposition to rice and Cd isotopes as a useful tracer for quantifying sources in plants when different isotopic compositions are in sources.
Collapse
Affiliation(s)
- Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| | - Yufang Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Leyong Kou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kaixin Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| |
Collapse
|
6
|
Qi X, Zhu M, Yuan Y, Dang Z, Yin H. Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132408. [PMID: 37647661 DOI: 10.1016/j.jhazmat.2023.132408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Biochar-assisted microbial remediation has been proposed as a promising strategy to eliminate environmental pollutants. However, studies on this strategy used in the remediation of persistent organic pollutants and heavy metals co-contaminated soil are lacking, and the effect of the combined incorporation of biochar and inoculant on the assembly, functions, and microbial interactions of soil microbiomes are unclear. Here, we studied 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) degradation and heavy metal immobilization by and biochar-based bacterial inoculant (BC/PP) in an e-waste contaminated soil, and corresponding microbial regulation mechanisms. Results showed that BC/PP addition was more effective in reducing Cu and Pb availability and degrading BDE-47 than inoculant alone. Notably, BC/PP facilitated bound-residue formation of BDE-47, reducing the ecological risk of residual BDE-47. Meanwhile, microbial carbon metabolism and enzyme activities (related to C-, N-, and P- cycles) were enhanced in soil amended with BC/PP. Importantly, biochar played a crucial role in inoculant colonization, community assembly processes, and microbiome multifunction. In the presence of biochar, positive interactions in co-occurrence networks of the bacterial community were more frequent, and higher network stability and more keystone taxa were observed (including potential degraders). These findings provide a promising strategy for decontaminating complex-polluted environments and recovering soil ecological functions.
Collapse
Affiliation(s)
- Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
7
|
Wang Z, Zhang R, Zhang C, Liang X, Cai Y, Liu W, Zhou Q, Liu R, Zhao Y. Oxidative compensation mechanism of Fe-S synergetic inhibition of Cd activity in paddy field during flooding and drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163955. [PMID: 37164083 DOI: 10.1016/j.scitotenv.2023.163955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
It is known that the transformation of Fe and S forms in soil affects the migration and activity of Cd, but the coordinated regulation of Cd activity by Fe and S under different redox conditions is still unclear. Here, Diffusive gradients in thin films (DGT), an in-situ monitoring technique, is used to explore the difference of the regulation of Cd activity in paddy fields with ferrihydrite (FH) and ferrihydrite coprecipitated by sulfate (FH-S) under the flooding and drainage conditions. The addition of FH-S and FH significantly reduced the activity of Cd (Dissolved, Exchanged, and CDGT-Cd). Compared with pure FH, the adsorption extent of Cd in FH was enhanced by increasing concentrations of SO42- (i.e., S/Fe ratio), which is attributed to the decrease in the crystallinity of FH by sulfate. During soil flooding, the addition of FH-S promoted the production of metal sulfide (CdS and FeS/FeS2). The activity of Cd increased after drainage, while the FH-S treatment groups delayed the release of Cd. After 30 days of drainage, the concentration of Cd in FH-S treatment groups decreased by 28.9-44.1 % compared with the control group. The fresh FeS/FeS2 is not the main adsorbent for fixing Cd, and due to the existence of oxidation compensation mechanism, the preferential oxidation of FeS/FeS2 delays the release of Cd in the drainage stage. Our study shed new light on the mechanism of Fe-S synergistic regulation of Cd and remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Runqi Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chuangchuang Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xuefeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yanming Cai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiwen Zhou
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Rongle Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
8
|
Schommer VA, Vanin AP, Nazari MT, Ferrari V, Dettmer A, Colla LM, Piccin JS. Biochar-immobilized Bacillus spp. for heavy metals bioremediation: A review on immobilization techniques, bioremediation mechanisms and effects on soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163385. [PMID: 37054796 DOI: 10.1016/j.scitotenv.2023.163385] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Heavy metals contamination present risks to ecosystems and human health. Bioremediation is a technology that has been applied to minimize the levels of heavy metals contamination. However, the efficiency of this process varies according to several biotic and abiotic aspects, especially in environments with high concentrations of heavy metals. Therefore, microorganisms immobilization in different materials, such as biochar, emerges as an alternative to alleviate the stress that heavy metals have on microorganisms and thus improve the bioremediation efficiency. In this context, this review aimed to compile recent advances in the use of biochar as a carrier of bacteria, specifically Bacillus spp., with subsequent application for the bioremediation of soil contaminated with heavy metals. We present three different techniques to immobilize Bacillus spp. on biochar. Bacillus strains are capable of reducing the toxicity and bioavailability of metals, while biochar is a material that serves as a shelter for microorganisms and also contributes to bioremediation through the adsorption of contaminants. Thus, there is a synergistic effect between Bacillus spp. and biochar for the heavy metals bioremediation. Biomineralization, biosorption, bioreduction, bioaccumulation and adsorption are the mechanisms involved in this process. The application of biochar-immobilized Bacillus strains results in beneficial effects on the contaminated soil, such as the reduction of toxicity and accumulation of metals in plants, favoring their growth, in addition to increasing microbial and enzymatic activity in soil. However, competition and reduction of microbial diversity and the toxic characteristics of biochar are reported as negative impacts of this strategy. More studies using this emerging technology are essential to improve its efficiency, to elucidate the mechanisms and to balance positive and negative impacts, especially at the field scale.
Collapse
Affiliation(s)
- Vera Analise Schommer
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ana Paula Vanin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Aline Dettmer
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
9
|
Mi Y, Zhou J, Liu M, Liang J, Kou L, Xia R, Tian R, Zhou J. Machine learning method for predicting cadmium concentrations in rice near an active copper smelter based on chemical mass balance. CHEMOSPHERE 2023; 319:138028. [PMID: 36736477 DOI: 10.1016/j.chemosphere.2023.138028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Identification the sources of heavy metals can effectively control and prevent agricultural soil pollution. Here we performed a three-year mass balance study along a gradient of soil pollution near a smelter to quantify the potential contribution and net cadmium (Cd) fluxes and predict Cd concentration in rice grains by multiple regression (MR) and back propagation (BP) neural network. The Cd inputs were mainly from the irrigation water (54.6-60.8%) in the moderately polluted and background sites but from atmospheric deposition (90.9%) in the highly polluted site. The Cd outputs were mainly from the surface runoff (55.8-59.5%) in the moderately polluted and background sites, but from Sedum plumbizincicola phytoextraction (83.6%) in the highly polluted site. The soil Cd concentrations, the annual fluxes of atmospheric deposition, pesticides and fertilizers, irrigation water, surface runoff, and leaching water were selected as the dependent factors to predict Cd concentrations in rice grains. The genetic algorithms (GA)-BP neural network model gives the best prediction accuracy compared to the BP neural network model and multivariate regression analysis. The major implication is that the health risks through the consumption of rice can be rapidly assessed based on the Cd concentrations in rice grains predicted by the model.
Collapse
Affiliation(s)
- Yazhu Mi
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
| | - Mengli Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Leyong Kou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ruiyun Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
| |
Collapse
|
10
|
Zhang C, Li J, Dai Y, Gustave W, Zhai W, Zhong Z, Chen J. Spatial and Temporal Variations of Heavy Metals' Bioavailability in Soils Regulated by a Combined Material of Calcium Sulfate and Ferric Oxide. TOXICS 2023; 11:296. [PMID: 37112523 PMCID: PMC10142891 DOI: 10.3390/toxics11040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal pollution in soils threatens food safety and human health. Calcium sulfate and ferric oxide are commonly used to immobilize heavy metals in soils. However, the spatial and temporal variations of the heavy metals' bioavailability in soils regulated by a combined material of calcium sulfate and ferric oxide (CSF) remain unclear. In this work, two soil column experiments were conducted to investigate the spatial and temporal variations of CSF immobilized Cd, Pb, and As. In the horizontal soil column, the results showed that CSF's immobilization range for Cd increased over time, and adding CSF in the center of the soil column decreased the concentrations of bioavailable Cd significantly, up to 8 cm away by day 100. The CSF immobilization effect on Pb and As only existed in the center of the soil column. The CSF's immobilization depths for Cd and Pb in the vertical soil column increased over time and extended to 20 cm deep by day 100. However, the CSF's immobilization depths for As only extended to between 5 and 10 cm deep after 100 days of incubation. Overall, the results from this study can serve as a guide to determine the CSF application frequency and spacing distance for the in-situ immobilization of heavy metals in soils.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
- Zhejiang Key Laborary of Environmental Protect Technology, Eco-Environmental Sciences Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxia Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau P.O. Box N-4912, Bahamas
| | - Weiwei Zhai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhong Zhong
- Zhejiang Key Laborary of Environmental Protect Technology, Eco-Environmental Sciences Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Jianmeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
| |
Collapse
|
11
|
Luo W, Zhao X, Wang G, Teng Z, Guo Y, Ji X, Hu W, Li M. Humic acid and fulvic acid facilitate the formation of vivianite and the transformation of cadmium via microbially-mediated iron reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130655. [PMID: 36580773 DOI: 10.1016/j.jhazmat.2022.130655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The effects of humic acids (HA) and fulvic acids (FA) on the fate of Cd in anaerobic environment upon microbial reduction of Cd-bearing ferrihydrite (Fh) with Geobacter metallireducens were investigated. The results showed that HA and FA could promote the reductive dissolution of Fh and the formation of vivianite. After incubation of 38 d, vivianite accounted for 47.19%, 59.22%, and 48.53% of total Fe in biological control batch (BCK), HA and FA batches (C/Fe molar ratio of 1.0), respectively, by Mössbauer spectroscopy analysis. In terms of Cd, HA and FA could promote the release of adsorbed Cd during the initial bioreduction process, but reassuringly, after 38 d the dissolved Cd with HA and FA addition batches were 0.58-0.91 and 0.99-1.08 times of the BCK, respectively. The proportions of residual Cd in HA batches were higher than FA and BCK batches, indicating that HA was better than FA in immobilizing Cd. This might be because the quinone groups in HA could act as electron shuttle. This study showed that HA facilitated the transformation of vivianite better than FA, and Cd can be stabilized by resorption or co-precipitation with vivianite, providing a theoretical support for the translocation of Cd in sediment-water interface.
Collapse
Affiliation(s)
- Wenqing Luo
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xin Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Gongting Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Shen J, Li J, Mao Z, Zhang Y. First-principle study on the stability of Cd passivates in soil. Sci Rep 2023; 13:4255. [PMID: 36918623 PMCID: PMC10015070 DOI: 10.1038/s41598-023-31460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The stable existence of heavy metals in soil under natural conditions is the core issue in heavy metal pollution solidification and remediation technology. However, the existing research is limited to soil passivation tests of different materials or biochar adsorption tests and cannot reveal the internal mechanism of functional groups of different compounds in soil passivation. This paper takes the common heavy metal ion Cd2+ as an example to analyze the stability of the combination of heavy metal ions and common ion groups in soil. The stability and existing form of Cd are analyzed by using first-principle calculations, and the free energy, band structure, and partial density of states of CdCO3, CdSO4, CdCl2, and CdSiO3 are computed. The stability of Cd binding to common anions in soil is determined. Results show the descending order of structural stability of cadmium compounds is CdSiO3, CdSO4, CdCO3, and CdCl2. SO42- and SiO32- can be used as preferred functional groups for cadmium pollution passivation. Anhydrous sodium sulfate and sodium silicate are promising passivators.
Collapse
Affiliation(s)
- Jianglong Shen
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China.
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China.
| | - Juan Li
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Zhongan Mao
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Yang Zhang
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| |
Collapse
|
13
|
Gao B, Liu K, Li F, Fang L. A chrysotile-based Fe/Ti nanoreactor enables efficient arsenic capture for sustainable environmental remediation. WATER RESEARCH 2023; 231:119613. [PMID: 36682237 DOI: 10.1016/j.watres.2023.119613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Iron-based materials for arsenic (As) immobilization in practical groundwater and soil remediation suffer from a low removal capacity and an insufficient long-term stability. Herein, a unique chrysotile-based nanoreactor has been developed by incorporating iron/titanium oxides into the cylindrical cavity of chrysotile (TiFe-Chy), providing sufficient internal reaction sites for As immobilization. Results reveal that the adsorption capacities of TiFe-Chy for As(III) and As(V) are considerably higher than the commonly used amendments, i.e., layered double hydroxide (LDH) and Phoslock®, respectively. More importantly, TiFe-Chy exhibits a strong anti-interference capability of As immobilization in soils compared to those commercial products due to this unique incorporation approach. Fixed-bed leaching experiments indciate that this TiFe-Chy nanoreactor can efficiently decrase the As(III) and As(V) concentrations by 81.8-87.3% within a period of ten years, significantly improving the long-term stability of As immobilization in soils. Life cycle assessment analysis reveals that TiFe-Chy can reduce negative environmental impacts (such as carbon emissions), resulting in a low cost for soils and groundwater remediation. The findings of this work open a new avenue for sustainable heavy metal(loid)s remediation in groundwater and soils.
Collapse
Affiliation(s)
- Baolin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
14
|
Chen F, Niu Y, An Z, Wu L, Zhou J, Qi L, Yin G, Dong H, Li X, Gao D, Liu M, Zheng Y, Hou L. Effects of periodic drying-wetting on microbial dynamics and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in intertidal wetland sediments. WATER RESEARCH 2023; 229:119436. [PMID: 36459897 DOI: 10.1016/j.watres.2022.119436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays an important role in methane (CH4) consumption in intertidal wetlands. However, little is known about the responses of n-DAMO in intertidal wetlands to periodic drying-wetting caused by tidal cycling. Here, comparative experiments (waterlogged, desiccated, reflooded) with the Yangtze estuarine intertidal sediments were performed to examine the effects of periodic tidal changes on n-DAMO microbial communities, abundances, and potential activities. Functional gene sequencing indicated the coexistence of n-DAMO bacteria and archaea in the tide-fluctuating environments and generally higher biodiversity under reflooded conditions than consecutive inundation or emersion. The n-DAMO microbial abundance and associated activity varied significantly during alternative exposure and inundation, with higher abundance and activity under the waterlogged than desiccated conditions. Reflooding of intertidal wetlands might intensify n-DAMO activities, indicating the resilience of n-DAMO microbial metabolisms to the wetting-drying events. Structural equation modeling and correlation analysis showed that n-DAMO activity was highly related to n-DAMO microbial abundance and substrate availability under inundation, whereas salt accumulation in sediment was the primary factor restraining n-DAMO activity under the desiccation. Overall, this study reveals tidal-induced shifts of n-DAMO activity and associated contribution to mitigating CH4, which may help accurately project CH4 emission from intertidal wetlands under different tidal scenarios.
Collapse
Affiliation(s)
- Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
15
|
Wang W, Yang Q, Wang Q, Hao J, Cui P, Cao J, Wang Y. Formation of Cr-based layered double hydroxide: effect of the amendments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:556-561. [PMID: 35786732 DOI: 10.1007/s00128-022-03557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Chromium is one of the eight most popular inorganic soil pollutants in China, and its bioavailability is determined by the chemical states. Amendments, which are able to change the chemical forms of chromium and decrease its bioavailability, have received considerable attention in recent years. In this work, the formation of Cr-based layered double hydroxides (LDHs) and the immobilization of Cr in solution and soil were systemically investigated. The formation of Cr-based LDHs is strongly depended on the layer charges, aging temperatures and reaction time, as identified by X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray absorption fine structure (XAFS) spectrum. According to the pot experiment results, the concentration of Cr in the overground part of Brassica Chinensis L. was significantly decreased to 1.50-2.03 µg kg- 1 in the present of amendments. In total, the finding of LDHs formation on amendments and the thermodynamic stability of LDHs provides a new insight into the remediation of Cr-polluted soils.
Collapse
Affiliation(s)
- Weixuan Wang
- College of Geography and Environmental Science, Northwest Normal University, 730070, Lanzhou, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Qiang Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiuyue Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jiachen Hao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China.
| | - Jianjun Cao
- College of Geography and Environmental Science, Northwest Normal University, 730070, Lanzhou, China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
16
|
Qi X, Xiao S, Chen X, Ali I, Gou J, Wang D, Zhu B, Zhu W, Shang R, Han M. Biochar-based microbial agent reduces U and Cd accumulation in vegetables and improves rhizosphere microecology. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129147. [PMID: 35643000 DOI: 10.1016/j.jhazmat.2022.129147] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial remediation of heavy metals in soil has been widely studied. However, bioremediation efficiency is limited in practical applications because of nutritional deficiency, low efficiency, and competition with indigenous microorganisms. Herein, we prepared a biochar-based microbial agent (BMA) by immobilizing the microbial agent (MA, containing Bacillus subtilis, Bacillus cereus, and Citrobacter sp.) on biochar for the remediation of U and Cd in soil. The results showed that BMA increased soil organic matter, cation exchange capacity, and fluorescein diacetate hydrolysis activity and dehydrogenase activity by 58.7%, 38.2%, 42.9%, and 51.1%. The availability of U and Cd were significantly decreased by 67.4% and 54.2% in BMA amended soil, thereby reducing their accumulation in vegetables. BMA greatly promoted vegetable growth. Additionally, BMA significantly altered the structure and function of rhizosphere soil microbial communities. Coincidently, more abundant ecologically beneficial bacteria like Nitrospira, Nitrosomonas, Lysobacter, and Bacillus were observed, whereas plant pathogenic fungi like Fusarium and Alternaria reduced in BMA amended soil. The network analysis revealed that BMA amendment increased the tightness and complexity of microbial communities. Importantly, the compatibility of niches and microbial species within co-occurrence network was enhanced after BMA addition. These findings provide a promising strategy for suppressing heavy metal accumulation in vegetables and promoting their growth.
Collapse
Affiliation(s)
- Xin Qi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shiqi Xiao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Analytical Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; State Defense Key Laboratory of Fundamental Science on Nuclear Wastes and Environment, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Imran Ali
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; State Defense Key Laboratory of Fundamental Science on Nuclear Wastes and Environment, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jialei Gou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; State Defense Key Laboratory of Fundamental Science on Nuclear Wastes and Environment, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Bo Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Wenkun Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Ran Shang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Mengwei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
17
|
Typical JUNCAO Overwintering Performance and Optimized Cultivation Conditions of Pennisetum sp. in Guizhou, Southwest China. SUSTAINABILITY 2022. [DOI: 10.3390/su14074086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
JUNCAO technology plays a critical role in managing soil ecology and alleviating contradiction between mushroom and forest, as JUNCAO can partially replace the wood chip as mushroom culture medium. At present, few reports focus on exploring the effects of seeding density, nitrogen fertilizers on JUNCAO growth and their overwintering performance. To close the above-mentioned research gaps, five typical types of JUNCAO were evaluated by investigating their grass yield, overwintering germination rates and nutrient adsorption condition. The results indicated that Pennisetum sp. showed the best overwintering performance. In addition, the optimized planting conditions for Pennisetum sp. include cultivation density (60 cm × 50 cm), oblique seeding using stem with double nodes, and 800 kg·ha−1 nitrogen fertilizer. This study gave good insights into low-temperature resisting performance and their overwintering characteristics of diverse JUNCAO species that favor for promoting the safe and efficient productions of the JUNCAO industry in subtropical areas.
Collapse
|