1
|
He C, Mo W, Yang Y, Guo W, Huang Y, Yu C, Su X, Yang J, Feng J, He A, Ma S. Microwave-assisted modification of magnetic Mg/Al/Fe-LDH hydrotalcite for efficient arsenic removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125228. [PMID: 40194497 DOI: 10.1016/j.jenvman.2025.125228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
In recent years, arsenic contamination in aquatic environments has become increasingly severe. Hydrotalcites are widely used for arsenic removal, but challenges remain regarding their removal efficiency and recyclability. To enhance the adsorption performance of Hydrotalcite-like(LDH) for arsenic and facilitate solid-liquid separation, in this study, magnetic Fe3O4 was combined with LDH and thermally modified using microwave treatment to obtain microwave-assisted modification of magnetic LDH(WFe3O4@MAF-LDH), which was used for arsenic removal. The results showed that WFe3O4@MAF-LDH effectively removed arsenic over a wide pH range. The adsorption of As(III) and As(V) by the material was well described by pseudo-first and pseudo-second-order kinetic models. Thermodynamic analysis confirmed that the adsorption process was spontaneous, and the maximum adsorption capacity of WFe3O4@MAF-LDH for As(III) was 217.62 mg/g. The inhibitory effect of coexisting anions on As(III) adsorption followed the order of SO42- > NO3- > Cl-. In addition, the material demonstrated strong and stable pollutant adsorption properties. Mechanically, arsenic removal by WFe3O4@MAF-LDH involved electrostatic interactions, ion exchange, coordination reactions, and oxidation-reduction reactions, as evidenced by material characterization means. Density Functional Theory(DFT) calculations revealed hydrogen bonding between H3AsO3/HAsO42- and WFe3O4@MAF-LDH, with MAF-LDH playing an important role in arsenic removal. In summary, WFe3O4@MAF-LDH demonstrated excellent arsenic removal, structural stability, and environmental friendliness, providing a valuable reference for the development of efficient adsorption treatment materials for arsenic-containing wastewater.
Collapse
Affiliation(s)
- Chunyan He
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Mo
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China.
| | - Yang Yang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Guo
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| | - Yuhua Huang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| | - Chang Yu
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China; China Nonferrous Metals (Guilin) Geology and Mining Co., Ltd, Guilin, 541000, China
| | - Xiujuan Su
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| | - Jinlin Yang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| | - Jinpeng Feng
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| | - Aoping He
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| | - Shaojian Ma
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Higher School Key Laboratory of Minerals Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
2
|
Rohit RC, Roy SC, Alam R, Islam SM. Metal-sulfide/polysulfide functionalized layered double hydroxides - recent progress in the removal of heavy metal ions and oxoanionic species from aqueous solutions. Dalton Trans 2024; 53:10037-10049. [PMID: 38775042 DOI: 10.1039/d4dt00883a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Water constitutes an indispensable resource for global life but remains susceptible to pollution from diverse human activities. To mitigate this issue, researchers are committed to purifying water using a variety of materials to remove harmful chemicals, such as heavy metals. Layered double hydroxides (LDHs), with their intriguing, layered structure and chemical behavior, have attained substantial attention for their effectiveness in removing heavy metal cations and various inorganic oxoanions from water. To enhance the efficiency, considerable endeavors have focused on functionalizing LDHs with different chemical species. Intercalation with metal sulfides has proven to be particularly effective, facilitating heavy metal absorption through multiple mechanisms, including ion-exchange, reductive precipitation, and surface sorption. This review concentrates on the synthesis and performance of polysulfide (Sx, x = 2-5), Mo-S, and Sn-S anion intercalated LDHs for heavy metal cations and inorganic oxoanion sorption, along with their mechanisms. Furthermore, the discussion includes prospects for expanding the chemistry of metal sulfide intercalated LDHs, with existing challenges and future outlooks.
Collapse
Affiliation(s)
- R C Rohit
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Subrata Chandra Roy
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Robiul Alam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| |
Collapse
|
3
|
Ma C, Liu M, Yang Z, Zheng Q, Mei J, Yang S. Highly efficient Cr (VI) removal from electroplating wastewater by regenerable copper sulfides: Mechanism and magical induction effect for Cr resource recovery. ENVIRONMENTAL RESEARCH 2023; 236:116799. [PMID: 37524156 DOI: 10.1016/j.envres.2023.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023]
Abstract
The current sorbents used to remove Cr (VI) from electroplating wastewater are faced with some challenges including the difficulty in separating, regenerating, and safely disposing of adsorbed Cr species. To address these challenges, CuSx/TiO2 was developed to recover Cr (VI) from electroplating wastewater. CuSx/TiO2 had superior performance in removing Cr (VI), with the rate and capacity of approximately 9.36 mg g-1 h-1 and 68.8 mg g-1 at initial pH 4.0, respectively. Additionally, Cu2+ released from CuSx/TiO2 during Cr (VI) removal would come back to its external surface as the Cu(OH)2 precipitate at initial pH 4.0, which helped to prevent the generation of secondary pollution. The Cu(OH)2 precipitate would be decomposed into CuOx after calcination, which would then be transformed back into CuSx by re-sulfuration for regeneration. Hence, CuSx showed a magical induction effect on Cr (VI) recovery, and Cr (VI) from electroplating wastewater might be gradually enriched as Cr2O3 in the sandwich between CuSx and TiO2 through multiple regenerations and removals, which could be considered as a chromium ore resource for industrial applications when the amount of enriched Cr2O3 reached more than 30 wt%. Overall, CuSx/TiO2 showed great potential as a promising sorbent for Cr (VI) removal from electroplating wastewater.
Collapse
Affiliation(s)
- Chen Ma
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Mengle Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zichen Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Qianxian Zheng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China.
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
4
|
Sun Q, Zhang L, Wang C, Liu X, Lou C, Yang Y. High nitrogen content bimolecular co-functionalized graphene nanoflakes for hypertoxic Cr(VI) removal: Insights into adsorption behavior and mechanisms. CHEMOSPHERE 2023; 340:139804. [PMID: 37579820 DOI: 10.1016/j.chemosphere.2023.139804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The proven high carcinogenicity to humans and high destructive force to the environment determine the extreme urgency of eliminating hypertoxic Cr(VI) in water bodies. Herein, a route of room temperature synthesis and secondary grafting was proposed to fabricate graphene oxide-based nanoadsorbent co-functionalized with polydopamine and branched polyethyleneimine (GOPP) to remove Cr(VI). The flexible decoration of polydopamine and polyethyleneimine on GO flakes could gradually enhance the amount of N-containing functional groups and realize selective removal of Cr(VI) with the maximum experimental adsorption capacity of 564.7 mg/g, displaying a significantly high separation factor against alkali metal, alkaline earth metal, and other transition metal ions. Various combination mechanisms, such as electrostatic attraction, reduction, complexation, and hydrogen bonding, were demonstrated to be involved in the adsorption process of Cr(VI) by XPS, ESP, and DFT calculations. And the interaction energies of the five protonated configurations of primary amine, tertiary amine, secondary amine, imine, and secondary amine on the ring with HCrO4- were: -22.66, -12.08, -24.92, -24.26, -27.64 kcal/mol. In the actual industrial wastewater study, a Cr(VI) removal rate of 85.8% was realized. This work provided a viable idea for the elimination of Cr(VI) and was expected to be applied in the field of wastewater treatment.
Collapse
Affiliation(s)
- Qian Sun
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Lixin Zhang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Changlong Wang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Xiaoxia Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Congcong Lou
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
5
|
Liu B, Xin YN, Zou J, Khoso FM, Liu YP, Jiang XY, Peng S, Yu JG. Removal of Chromium Species by Adsorption: Fundamental Principles, Newly Developed Adsorbents and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020639. [PMID: 36677697 PMCID: PMC9861687 DOI: 10.3390/molecules28020639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Emerging chromium (Cr) species have attracted increasing concern. A majority of Cr species, especially hexavalent chromium (Cr(VI)), could lead to lethal effects on human beings, animals, and aquatic lives even at low concentrations. One of the conventional water-treatment methodologies, adsorption, could remove these toxic Cr species efficiently. Additionally, adsorption possesses many advantages, such as being cost-saving, easy to implement, highly efficient and facile to design. Previous research has shown that the application of different adsorbents, such as carbon nanotubes (carbon nanotubes (CNTs) and graphene oxide (GO) and its derivatives), activated carbons (ACs), biochars (BCs), metal-based composites, polymers and others, is being used for Cr species removal from contaminated water and wastewater. The research progress and application of adsorption for Cr removal in recent years are reviewed, the mechanisms of adsorption are also discussed and the development trend of Cr treatment by adsorption is proposed.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
| | - Ya-Nan Xin
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Fazal Muhammad Khoso
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi-Ping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Sui Peng
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
- Correspondence: (S.P.); (J.-G.Y.); Tel./Fax: +86-731-88879616 (J.-G.Y.)
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence: (S.P.); (J.-G.Y.); Tel./Fax: +86-731-88879616 (J.-G.Y.)
| |
Collapse
|
6
|
Chu TTH, Nguyen MV. Improved Cr (VI) adsorption performance in wastewater and groundwater by synthesized magnetic adsorbent derived from Fe 3O 4 loaded corn straw biochar. ENVIRONMENTAL RESEARCH 2023; 216:114764. [PMID: 36395861 DOI: 10.1016/j.envres.2022.114764] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
This work developed an easy method to utilize corn straw (CS) waste for sustainable development and reduce the volume of waste volume as well as bring value-added. The magnetic adsorbent was prepared by loading Fe3O4 onto biochar derived from corn straw (Fe@CSBC), then used for capturing Cr (VI) in groundwater and wastewater samples. The characterization of adsorbents showed that Fe3O4 was successfully loaded on corn straw biochar (CSBC) and contributed to the improvement of the surface area, and surface functional groups like Fe-O, Fe-OOH, CO, and O-H. The presence of iron oxide was further confirmed by XPS and XRD analysis and a magnetization value of 35.6 emu/g was obtained for Fe@CSBC. The highest uptake capacity of Cr (VI) onto Fe@CSBC and CSBC by monolayer were 138.8 and 90.6 mg/g, respectively. By applying magnetic adsorbent Fe@CSBC for the treatment of groundwater and wastewater samples, the chromium could be removed up to 90.3 and 72.6%, respectively. The remaining efficiency of Cr (VI) was found to be 84.5% after four times reused Fe@CSBC, demonstrating the great recyclable ability of the adsorbent. In addition, several interactions between Cr (VI) and Fe@CSBC like ion exchange, complexation, and reduction reaction were discussed in the proposed adsorption mechanism. This study brings an efficient method to turn corn straw biomass into an effective magnetic adsorbent with high adsorption performance and good reusability of Cr (VI) in groundwater as well as in wastewater.
Collapse
Affiliation(s)
- Thi Thu Hien Chu
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Vietnam.
| | - Minh Viet Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| |
Collapse
|
7
|
Rapid and selective recovery of Ag(I) from simulative electroplating effluents by sulfydryl-rich covalent organic framework (COF-SH) with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Alsaggaf WT, Shawky A, Mahmoud M. S-scheme CuO/ZnO p-n heterojunctions for endorsed photocatalytic reduction of mercuric ions under visible light. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Insight into ANN and RSM Models’ Predictive Performance for Mechanistic Aspects of Cr(VI) Uptake by Layered Double Hydroxide Nanocomposites from Water. WATER 2022. [DOI: 10.3390/w14101644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mathematical predictive models are vital tools for understanding of pollutant uptake during adsorptive water and wastewater treatment processes. In this study, applications of CoAl-LDH and its bentonite-CoAl intercalated LDH (bentonite-CoAl-LDH) for uptake of Cr(VI) from water were modeled using response surface methodology (RSM) and artificial neural network (ANN), and their performance for predicting equilibrium, thermodynamics and kinetics of the Cr(VI) uptake were assessed and compared based on coefficient of determination (R2) and root mean square error (RMSE). The uptake of Cr(VI) fits well quartic RSM polynomial models and ANN models based on Levenberg–Marquardt algorithms (ANN-LMA). Both models predicted a better fit for the Langmuir model compared to the Freundlich model for the Cr(VI) uptake. The predicted non-linear Langmuir model contestant (KL) values, for both the RSM and ANN-LMA models yielded better ΔG°, ΔH and ΔS predictions which supported the actual feasible, spontaneous and greater order of reaction as well as exothermic nature of Cr(VI) uptake onto the tested adsorbents. Employing the linear Langmuir model KL values dwindles the thermodynamic parameter predictions, especially for the RSM models. The excellent kinetic parameter predictions for the ANN-LMA models further indicate a mainly pseudo-second-order process, thus confirming the predominant chemisorption mechanism as established by the Cr(VI) speciation and surface charges for the Cr(VI) uptake by both CoAl-LDH and bentonite-CoAl-LDH. The ANN-LMA models showed consistent and insignificant decline in their predictions under different mechanistic studies carried out compared to the RSM models. This study demonstrates the high potential reliability of ANN-LMA models in capturing Cr(VI) adsorption data for LDHs nanocomposite heavy metal uptake in water and wastewater treatment.
Collapse
|