1
|
Zhang T, Xu Z, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Progress on layered double hydroxides as green materials in sustainable agricultural production. ENVIRONMENTAL RESEARCH 2025; 271:121031. [PMID: 39922260 DOI: 10.1016/j.envres.2025.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
As the global population continues to grow, there is increasing demand for high-quality and high-yield food. However, traditional agrochemicals such as fertilizers and pesticides suffer from low utilization rates and can be hazardous to non-target organisms and the soil environment. Two-dimensional layered double hydroxides (LDHs) have attracted considerable attention in the agricultural sector owing to their excellent properties. To alleviate the general concern about the use of LDH materials in combination with agrochemicals, this paper presents a comprehensive overview of the structure, properties, preparation methods, and cytotoxicity of LDHs, with a focus on the advantages and disadvantages of different synthesis methods. In addition, the current research status of the application of LDHs as green materials in modern agricultural production is presented, and the applications of nano fertilizers for promoting crop growth, nano pesticides for efficient herbicide and insecticide, efficient adsorption of pollutants and soil heavy metal ions to maintain soil stability, and applications in genetic modification and enhancement of plant photosynthesis are discussed in detail. Finally, future research directions for LDH are envisioned. We hope that this study will promote the use of LDH materials in agricultural practices.
Collapse
Affiliation(s)
- Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
2
|
Qi M, Wang D, Zhai H, Zhou F, Wu H, Zhao W, Ren R, Shi J, Liang D. Effects of straw amendment on the bioavailability of selenite in soil and its mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117578. [PMID: 39709708 DOI: 10.1016/j.ecoenv.2024.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Dissolved organic matter (DOM) released by straw returning for decomposition interacts with selenium (Se) in soil, which affects the speciation distribution of Se and its bioavailability. However, the relative mechanisms involved are slightly understood. This study investigated the effects of straw-derived DOM on two levels of exogenous selenite (low-Se and high-Se treatments) in two types of soil with distinct pH. Interactions between DOM and Se were revealed through three-dimensional excitation emission matrix (3D-EEM) fluorescence spectroscopy and two-dimensional correlation spectroscopy (2D-COS). Results showed that straw amendment significantly enhanced selenite bioavailability in alkaline Lou soil regardless of Se application rates (p < 0.05). However, only the high-Se treatment generated remarkable Se content in wheat grains in acidic krasnozems (p < 0.05). Selenite predominantly incorporated with phenolic and etheric C-O functional groups of DOM in soil, which mainly existed in aromatic DOM such as humic acid (HA). Consequently, HA-Se was more likely to form in krasnozems enriched with HA. 2D-COS evidenced that HA mineralization promoted Se bioavailability in krasnozems with high-Se treatment. After selenite complexed with saturated and unsaturated aliphatic carboxyl groups (CO) of DOM, it formed Hy-Se and FA-Se in Lou soil, which could be directly absorbed by wheat roots. Therefore, the composition and functional group reaction sequences of DOM in different soils manipulated selenite bioavailability in soil. These findings could provide a basis for regulating Se bioavailability during biofortification in soils.
Collapse
Affiliation(s)
- Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Oasis Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanchen Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rongxin Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyi Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Zhang J, Li Y, Yuan J, Chi F, Kuang E, Zhu Y, Sun L, Wei D, Liu J. Analysis of the fluorescence spectral characteristics of dissolved organic matter in a black soil with different straw return amounts. Sci Rep 2024; 14:29948. [PMID: 39622888 PMCID: PMC11612491 DOI: 10.1038/s41598-024-72050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 12/06/2024] Open
Abstract
Straw return improves soil carbon pool and dissolved organic matter (DOM) characteristics in black soil. Optimal straw return rate is the key to promoting straw return practices in farmland in Northeast China. The experiment was conducted at the Science and Technology Park of China Grain Storage and Northern Corporation in NenJiang, Heilongjiang Province, straw return at 0 kg hm-2, 3000 kg hm-2, 4500 kg hm-2, and 9000 kg hm-2. In the seventh year of the experiment, we used three-dimensional excitation-emission matrices combined with Parallel Factor analysis to characterize the fluorescence characteristics of DOM of black soils. The results showed substantial improvement in soil physical characteristics and soil organic matter (SOM) following straw return, SOM content rises in proportion to the amount of straw returned, and a significant positive correlation coefficient between water-holding capacity (WHC) (p < 0.001, r = 0.82) and dissolved organic matter (DOC) (p < 0.01, r = 0.77). Moreover, straw return significantly increased the richness of three fluorescent components, namely fulvic acid (UV and visible fulvic acids), humic-like acid, and protein-like (short and long-wavelength tryptophan). The fluorescence intensities of these components were lower in straw treatments than in no straw return. The fluorescence intensities of fulvic and humic acids showed decreasing and increasing trends, respectively, with increasing straw return amount. The fluorescence spectroscopy data of DOC demonstrated the key role of high straw return amounts in enhancing substantially the metabolic activity of soil microorganisms. Overall, straw-returning practices improve soil fertility and can be beneficial for black soil farmlands, with the optimal return rate observed at 4500 kg hm-2.
Collapse
Affiliation(s)
- Jiuming Zhang
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yan Li
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jiahui Yuan
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Fengqin Chi
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Enjun Kuang
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yingxue Zhu
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Lei Sun
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Dan Wei
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| | - Jie Liu
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
4
|
Cervantes-Díaz Á, Nieto-Carmona JC, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P. Kinetic study, byproducts characterization and photodegradation pathway of profoxydim in a biochar water soil system. Sci Rep 2024; 14:27117. [PMID: 39511393 PMCID: PMC11543925 DOI: 10.1038/s41598-024-78621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
The study focused on the photodegradation of profoxydim, a low-toxicity cyclohexanedione herbicide commonly used in rice crops, under simulated sunlight conditions. Profoxydim's behavior in paddy field conditions is not well understood, and this research aimed to fill that gap, particularly examining the effect of commonly utilized organic amendments such as biochar (BC) on its degradation. Results indicated that profoxydim degrades rapidly, with a half-life of 2.4 ± 0.3 h in paddy water and 1.03 ± 0.1 h in paddy soil. However, when BC was introduced, the degradation slowed significantly, extending the half-lives to 3.1 ± 0.2 h in water and 3.07 ± 0.5 h in soil. The study identified five degradation products (DPs) using TOF mass accuracy measurements and MS/MS spectra fragmentation. Two of these DPs were found to be more stable than profoxydim itself. Additionally, the research proposed a novel photodegradation pathway, highlighting processes such as homolytic C-N bond cleavage, photoisomerization, and photoinduced oxidation. The study's findings contribute new insights into the environmental fate of profoxydim, offering a deeper understanding of its transformation in rice paddy fields and aiding in the assessment of potential risks associated with its residues in agricultural environments.
Collapse
Affiliation(s)
- Álvaro Cervantes-Díaz
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
- Department of Agricultural Chemistry and Food Science, UAM-Madrid, Madrid, Spain
| | - Juan Carlos Nieto-Carmona
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - Beatriz Sevilla-Morán
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - José Luis Alonso-Prados
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain
| | - Pilar Sandín-España
- Plant Protection Products Unit/Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, Madrid, 28040, Spain.
| |
Collapse
|
5
|
Ren D, Yang B, Wang Y, Wang J. Molecular-level insight into the role of soil-derived dissolved organic matter composition in regulating photochemical reactivity. WATER RESEARCH 2024; 268:122765. [PMID: 39541853 DOI: 10.1016/j.watres.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Soil-derived dissolved organic matter (DOM) links soil and water carbon pools and is an important source of photochemically produced reactive intermediates (PPRIs) in aquatic environments. Despite its importance, the variations in photochemical reactivity of soil-derived DOM molecules in producing PPRIs across broad geographical regions, and the factors driving these variations, remain unclear. Herein, we resolved the apparent quantum yields (Φ(PPRIs)) of hydroxyl radicals (•OH), singlet oxygen (1O2), and excited triplet-state DOM (3DOM*) for irradiated DOM from 22 representative soil reference materials in China, and linked them to soil pH, mineral weathering degree, and DOM characteristics. Generally, the average Φ(PPRIs) values of the soil-derived DOM followed the order of Φ(3DOM*) (1.67× 10-2) > Φ(1O2) (1.47× 10-2) > Φ(•OH) (7.31× 10-5). The DOM from less weathered soils showed higher Φ(•OH) and Φ(3DOM*) and comparable Φ(1O2) than that from more weathered soils. The differences were mainly regulated by the abundance of humic-, lignin-, tannin-, and aromatic-like compounds, as indicated by the correlation and random forest model analyses. Partial least squares and multiple linear regression analyses identified DOM molecular weight, nominal oxidation state of carbon, and soil chemical index of alteration as effective predictors of •OH yields. Soil chemical index of alteration emerged as a prioritized predictor of 3DOM* yields, while the electron-donating capacity and humic-like compound content of the soil-derived DOM were effective predictors of 1O2 yields. This study advances our understanding of how mineral weathering processes regulate the photochemical reactivity of soil-derived DOM in the aquatic environment across wide geographical regions.
Collapse
Affiliation(s)
- Dong Ren
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinghui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Che S, Xu Y, Qin X, Tian S, Wang J, Zhou X, Cao Z, Wang D, Wu M, Wu Z, Yang M, Wu L, Yang X. Building microbial consortia to enhance straw degradation, phosphorus solubilization, and soil fertility for rice growth. Microb Cell Fact 2024; 23:232. [PMID: 39169403 PMCID: PMC11337586 DOI: 10.1186/s12934-024-02503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Straw pollution and the increasing scarcity of phosphorus resources in many regions of China have had severe impacts on the growing conditions for crop plants. Using microbial methods to enhance straw decomposition rate and phosphorus utilization offers effective solutions to address these problems. In this study, a microbial consortium 6 + 1 (consisting of a straw-degrading bacterium and a phosphate-solubilizing bacterium) was formulated based on their performance in straw degradation and phosphorus solubilization. The degradation rate of straw by 6 + 1 microbial consortium reached 48.3% within 7 days (The degradation ability was 7% higher than that of single bacteria), and the phosphorus dissolution rate of insoluble phosphorus reached 117.54 mg·L- 1 (The phosphorus solubilization ability was 29.81% higher than that of single bacteria). In addition, the activity of lignocellulosic degrading enzyme system was significantly increased, the activities of endoglucanase, β-glucosidase and xylanase in the microbial consortium were significantly higher than those in the single strain (23.16%, 28.02% and 28.86%, respectively). Then the microbial consortium was processed into microbial agents and tested in rice pots. The results showed that the microbial agent significantly increased the content of organic matter, available phosphorus and available nitrogen in the soil. Ongoing research focuses on the determination of the effects and mechanisms of a functional hybrid system of straw degradation and phosphorus removal. The characteristics of the two strains are as follows: Straw-degrading bacteria can efficiently degrade straw to produce glucose-based carbon sources when only straw is used as a carbon source. Phosphate-solubilizing bacteria can efficiently use glucose as a carbon source, produce organic acids to dissolve insoluble phosphorus and consume glucose at an extremely fast rate. The analysis suggests that the microbial consortium 6 + 1 outperformed individual strains in terms of both performance and application effects. The two strains within the microbial consortium promote each other during their growth processes, resulting in a significantly higher rate of carbon source consumption compared to the individual strains in isolation. This increased demand for carbon sources within the growth system facilitates the degradation of straw by the strains. At the same time, the substantial carbon consumption during the metabolic process generated a large number of organic acids, leading to the solubilization of insoluble phosphorus. It also provides a basis for the construction of this type of microbial consortium.
Collapse
Affiliation(s)
- Songhao Che
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yufeng Xu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xueting Qin
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Shiqi Tian
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jianing Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xueying Zhou
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhenning Cao
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Dongchao Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Meikang Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Meiying Yang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Lei Wu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Xue Yang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
7
|
Liu Y, Li M, Ren D, Li Y. Spatial distribution of sediment dissolved organic matter in oligotrophic lakes and its binding characteristics with Pb(II) and Cu(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43369-43380. [PMID: 38902445 DOI: 10.1007/s11356-024-34043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Dissolved organic matter (DOM), the most active component in interstitial waters, determines the stability of heavy metals and secondary release in sediments. However, little is known about the composition and metal-binding patterns of DOM in interstitial water from oligotrophic lakes affected by different anthropogenic perturbations. Here, 18 interstitial water samples were prepared from sediments in agricultural, residential, tourist, and forest regions in an oligotrophic lake (Shengzhong Lake in Sichuan Province, China) watershed. Interstitial water quality and DOM composition, properties, and Cu(II)- and Pb(II)-binding characteristics were measured via physicochemical analysis, UV-vis spectroscopic, fluorescence excitation-emission matrix-parallel factor analysis (EEM-PARAFAC), and fluorescence titration methods. The DOM, which was produced mainly by microbial activities, had low molecular weights, humification degrees, and aromaticity. Based on EEM-PARAFAC results, the DOM was generally composed of tryptophan- (57.7%), terrestrial humic- (18.7%), microbial humic- (15.6%), and tyrosine-like (8.0%) substances. The DOM in the metal complexes was primarily composed of tryptophan-like substances, which accounted for ~42.6% of the DOM-Cu(II) complexes and ~72.0% of the DOM-Pb(II) complexes; however, microbial humic-like substances primarily contributed to the stability of DOM-Cu(II) (logKCu = 3.7-4.6) and DOM-Pb(II) (logKPb = 4.3-4.8). Water quality parameters did not significantly affect the stability of DOM-metal complexes. We demonstrated that the metal-binding patterns of DOM in interstitial water from oligotrophic lakes are highly dependent on microbial DOM composition and are affected by anthropogenic perturbations to a lesser extent.
Collapse
Affiliation(s)
- Yanmei Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Mengyuan Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
- Nanchong Key Laboratory of Eco-Environmental Protection and Pollution Prevention in Jialing River Basin, Nanchong, 637000, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
8
|
Wang D, Mai L, Yu Z, Wang K, Meng Z, Wang X, Li Q, Lin J, Wu D. Deciphering the bioavailability of dissolved organic matter in thermophilic compost and vermicompost at the molecular level. BIORESOURCE TECHNOLOGY 2024; 391:129947. [PMID: 37914056 DOI: 10.1016/j.biortech.2023.129947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Studies on compost dissolved organic matter (DOM) previously focus on its composition and humification, without considering DOM bioavailability to understand compost fertility. To decipher the fertility basis of compost, DOM bioavailability in thermophilic compost (TC) and vermicompost (VC) was investigated and linked with its molecular composition. Results showed that DOM bioavailability of VC (36 % BDOC) was generally higher than that of TC (22 % BDOC) due to containing more tannin-like substances. Inversely, only lipid-/carbohydrate-/protein-like substances contributed to DOM bioavailability in TC. Moreover, these differences of bioavailability expanded with C/N decreased in composting materials. Specifically, the %BDOC of VC with N-rich materials (C/N < 25) was 2.1-3.0 times higher than that in TC, while it was only 1.2-1.4 times for C-rich materials (C/N < 25), because N-surplus facilitated the formation of O-/N-containing aromatics (e.g., CHON and tannin) in VC, but inhibited the decomposition of organic materials into small bioactive molecules in TC.
Collapse
Affiliation(s)
- Dingmei Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Liwen Mai
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Zhen Yu
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kongtan Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Institute of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ze Meng
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Xiongfei Wang
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Qinfen Li
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Jiacong Lin
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| | - Dongming Wu
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| |
Collapse
|
9
|
Wang J, Feng C, Hu B, Chen S, Hong Y, Arrouays D, Peng J, Shi Z. A novel framework for improving soil organic matter prediction accuracy in cropland by integrating soil, vegetation and human activity information. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166112. [PMID: 37567300 DOI: 10.1016/j.scitotenv.2023.166112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Remote sensing is an important tool for monitoring soil information. However, accurate spatial modeling of soil organic matter (SOM) in areas with high vegetation coverage, typically represented by agroecosystems, remains a challenge for field-scale estimation using remote sensing. To date, studies have focused on using single-period or multi-temporal vegetation information to characterize SOM. Thus, the relationship between SOM content and time-series vegetation biomass has not yet been fully explored. In addition, most studies have ignored the effects of critical soil properties and human activities (e.g., soil salinization, soil particle size fractions, history of land-use changes) on SOM. By integrating information on vegetation, soil, and human activities, we propose a novel framework for assessing SOM in cotton fields of artificial oases in northwest China, where returned straw is one of the primary sources of SOM coming from vegetation. We developed an Annual Maximum Biomass Accumulation Index (AMBAI) using time-series Landsat images from 1990 to 2019. Subsequently, we quantified the information of the planting years (PY) of cropland using spectral index threshold and incorporated proximal sensing data (soil hyperspectral and apparent conductivity data) and soil particle size fractions to establish a predictive model of SOM using partial least squares regression (PLSR), random forest (RF), and convolutional neural network (CNN). The results revealed that AMBAI had the highest correlation coefficient (r) with SOM (0.76, P < 0.01). AMBAI, soil hyperspectral data, and PY were the most relevant predictors for estimating SOM. The CNN model integrating vegetation, soil, and human activity information performed best, with coefficient of determination (R2), relative analysis error (RPD), and root mean square error (RMSE) of 0.83, 2.38 and 1.38 g kg-1, respectively. This study confirmed that AMBAI and PY had great potential for characterizing SOM in arid and semi-arid regions, providing a reference for other relevant studies.
Collapse
Affiliation(s)
- Jiawen Wang
- College of Agriculture, Tarim University, Alar 843300, China; College of Life Sciences and Technology, Tarim University, Alar 843300, China
| | - Chunhui Feng
- College of Horticulture and Forestry, Tarim University, Alar 843300, China.
| | - Bifeng Hu
- Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China.
| | - Songchao Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China.
| | - Yongsheng Hong
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | - Jie Peng
- College of Agriculture, Tarim University, Alar 843300, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Alar 843300, China; Research Center of Oasis Agricultural Resources and Environment in Southern Xinjiang, Tarim University, Alar 843300, China.
| | - Zhou Shi
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Tang X, Wen J, Mu L, Gao Z, Weng J, Li X, Hu X. Regulation of arsenite toxicity in lettuce by pyrite and glutamic acid and the related mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162928. [PMID: 36934948 DOI: 10.1016/j.scitotenv.2023.162928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Compared with the effect of a single substance on arsenic plant toxicity, the effect of coexisting pyrite and natural organic matter can better reflect actual environmental conditions. In this study, the interaction between pyrite and glutamic acid in arsenite solution was explored, the influence of pyrite and glutamic acid on arsenite plant toxicity was evaluated, and the metabolic regulation mechanism of pyrite and glutamic acid on the arsenite phytotoxic effect was clarified by metabolomics analysis. Combined pyrite and glutamic acid treatment fixed more arsenic by forming chemical bonds such as AsS, AsO, and As-O-OH in culture solution and reduced inorganic arsenic levels in plants. Compared with glutamic acid alone and pyrite alone, the combined treatment reduced the inorganic arsenic concentration in plants by 4.7 % and 40.0 %, respectively. The combined treatment limited plant ROS accumulation and maintained the leaf chlorophyll content by increasing SOD synthesis. Compared with the effect of As(III) alone, the chlorophyll content increased by 15.1-21.0 % on average under the combined treatment. The combined treatment promoted the absorption of Ca, Cu, Fe, Mo and Zn in lettuce, enhanced plant adaptation to As(III) and significantly improved plant nutritional quality. Compared with glutamic acid alone, the combined treatment increased the VC, fiber and protein contents by 128.9 %, 202.8 % and 36.7 %, respectively. Metabolomics analysis indicated that in the combined treatment group, the upregulation of tyrosine, pyruvate and N metabolism increased the plant chlorophyll content. The upregulation of S metabolism increases VC synthesis in plants and inhibits ROS accumulation, thus maintaining normal plant growth and development. The upregulation of glutathione and glycine metabolism enhances plant stress resistance. This study will provide a new way to scientifically and rationally evaluate the ecological risk of arsenic and regulate its toxicity.
Collapse
Affiliation(s)
- Xin Tang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Jingyu Wen
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China.
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Jingxian Weng
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|
11
|
Li Y, Qing C, Guo S, Deng X, Song J, Xu D. Will farmers follow their peers in adopting straw returning? Evidence from rural Sichuan Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21169-21185. [PMID: 36264456 DOI: 10.1007/s11356-022-23648-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
From the perspective of conformity tendency, based on 540 farmers' data in Sichuan Province, China, the study used the probability score matching (PSM) model and mediator model to explore the role of four types of peers' straw returning behavior on farmers' preferences to implement straw returning and the realization paths. It was found that (1) farmers' preferences to implement straw returning were influenced by the straw returning behavior of neighbors, relatives, wealthy villagers, and village cadres, i.e., there were conformity tendencies in farmers' straw returning decisions. (2) The degree of conformity tendencies formed by different peers varied. Among the peers affecting farmers' preferences to implement straw returning, the effect of village cadres was the largest, followed by neighbors, relatives, and the wealthy villagers. (3) The degree of conformity tendencies varied by decision-makers. The younger and less educated the farmers were, the more willing they were to adopt straw returning driven by their neighbors, relatives, wealthy villagers, and village cadres. (4) In the conformity tendencies (including conformity to neighbors, relatives, wealthy villagers, and village cadres) of straw returning, farmers' perceptions of income benefits and environmental benefits played a significant mediating role, and the perception of environmental benefits was more vital.
Collapse
Affiliation(s)
- Yanjiao Li
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Qing
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shili Guo
- China Western Economic Research Center, Southwestern University of Finance and Economics, Chengdu, 610074, China
| | - Xin Deng
- College of Economics, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiahao Song
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dingde Xu
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China.
- Sichuan Center for Rural Development Research, College of Management, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Yang G, Tang X, Guan Z, Cui J. Effects of Straw Return and Moisture Condition on Temporal Changes of DOM Composition and Cd Speciation in Polluted Farmland Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912128. [PMID: 36231431 PMCID: PMC9566551 DOI: 10.3390/ijerph191912128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Straw return can improve soil quality and change the mobility and bioavailability of pollutants in soil. Elevated cadmium (Cd) contents in farmland soils were often reported. However, the impacts of straw-derived dissolved organic matter (DOM) on Cd speciation in soil remain poorly understood. In this study, the effects of straw return and moisture condition on temporal changes of DOM composition and Cd speciation in farmland soils were explored through a laboratory incubation experiment. The humified components of DOM were negatively correlated with exchangeable, carbonate-bound, and Fe-Mn oxide-bound Cd (p < 0.01), while its protein-like component was negatively correlated with residual Cd (p < 0.01). It was found that selected fluorescence parameters could be used to predict temporal changes of Cd geochemical fractions. Straw addition led to increases in soil DOM content during the first three days of the incubation. Flooding should be avoided in the first three days following the straw application to reduce the risk of DOM-facilitated Cd mobilization.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Tang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence:
| | - Zhuo Guan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junfang Cui
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
13
|
Photodegradation of Decabrominated Diphenyl Ether in Soil Suspensions: Kinetics, Mechanisms and Intermediates. Processes (Basel) 2022. [DOI: 10.3390/pr10040718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Pollution by polybrominated diphenyl ethers (PBDEs) is a major concern due to their bioaccumulation, persistence, and carcinogenicity. This study aimed to investigate the decabrominated diphenyl ether (BDE-209) photodegradation in soil suspensions. The results indicate BDE-209 can degrade in soil suspensions and its degradation follows pseudo-first-order kinetics. The light sources and intensity effects were studied and the photodegradation rates were 500 W Mercury Lamp > 300 W Mercury Lamp > 500 W Xenon Lamp > 300 W Xenon Lamp, which indicates UV light is the main reason for BDE-209 degradation. Soil particle inhibits BDE-209 photodegradation due to the light-shielding effect. BDE-209 photodegradation rates increased from 0.055 to 0.071 h−1 with pH value increasing from 3.5 to 9.5. This may be because the products are more easily produced in higher pH soil suspensions. The presence of humic acid (HA) may inhibit BDE-209 photodegradation by photo-shielding. Fe3+ and Cu2+ have an adverse effect on BDE-209 photodegradation due to the photo competition. The •OH and 1O2 were detected in soil solutions. Analysis of the photoproducts of BDE-209 by gas chromatography mass spectrometry (GC-MS) and liquid chromatography time of flight mass spectrometry (LC-TOF-MS) showed that BDE-209 was mainly debrominated to the lower-brominated BDEs and the reactive oxygen radicals may not lead to BDE-209 degradation.
Collapse
|