1
|
Wen R, Deng J, Yang H, Li YY, Cheng H, Liu J. A chemically enhanced primary treatment and anammox-based process for sustainable municipal wastewater treatment: The advantage and application prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124406. [PMID: 39914215 DOI: 10.1016/j.jenvman.2025.124406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Low-carbon nitrogen removal, bioenergy production, and phosphorus recovery are key goals for sustainable municipal wastewater treatment. Traditional activated sludge processes face an energy demand conflict. Anaerobic ammonium oxidation (Anammox) offers a solution to this issue, with the A-B process providing a sustainable approach. Stable and cost-effective nitrite supply for mainstream anammox has gained attention, while the interactions between A-B stage processes are also crucial. This paper reviews the benefits and challenges of mainstream anammox, bioenergy, and phosphorus recovery. A combined process of chemically enhanced primary treatment, partial denitrification and anammox is identified as effective for sustainable treatment. Additionally, the stable nitrite supply from the sidestream partial nitrification provides a 54% nitrogen removal contribution to the mainstream anammox. Anaerobic digestion with sulfate reduction is proposed as an efficient method for simultaneous bioenergy and phosphorus recovery from iron-enhanced primary sludge. The recycling of iron and sulfate reduces excess sludge and cuts costs. A novel wastewater treatment scheme, supported by a mass balance analysis, is presented; the proposed process is capable of recovering >50% of the carbon and phosphorus, while reduced 40% dosing of Fe and S chemicals, reducing the cost of chemical dosing and treatment of the digestate while meeting the high-quality effluent. The paper also explores the potential for transitioning from conventional activated sludge processes and suggests directions for future research.
Collapse
Affiliation(s)
- Ruolan Wen
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Jiayuan Deng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| |
Collapse
|
2
|
Meng Z, Yan Y, Li G, Li Y, Wu K, Zhang Z, Reid MC, Gu AZ. New strategy for integration of anaerobic side-stream reactor with mainstream B-stage nitritation for short-cut nitrogen removal with granulation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70056. [PMID: 40070314 DOI: 10.1002/wer.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
This study reported a successful mainstream B-stage nitritation reactor with sludge granulation that incorporated a side-stream anaerobic reactor to treat municipal wastewater A-stage effluent. With influent COD/N and COD/P ratios of 2.60 and 27.1, respectively, the system achieved a stable nitrite accumulating ratio (NAR) of 95.1% via partial nitrification with sludge granulations. Kinetic assessment,16S ribosomal RNA sequencing, and functional gene marker quantification confirmed successful nitrite-oxidizing bacteria (NOB) out-selection (<0.05% relative abundance), while none of the commonly employed approaches for NOB out-selection occurred in our study. Notably, approximately 90% of the total biomass was in the biofilm in the mainstream sequencing batch reactor (SBR), with the remaining 10% of the biomass in suspension as granules under the selective wasting strategy. The substrates and oxygen gradient along the depth of the biofilm's layered structure, alongside the anaerobic conditions in the side-stream reactor, were suggested to play roles in NOB suppression and out-selection. Overall, this study provided evidence for a possible new strategy for achieving stable mainstream B-stage nitritation, which is the prerequisite for the downstream anammox process. The novelty aspect of the systems, including the incorporation of an anaerobic sire-stream reactor, absence of the employment of any previously reported nitritation strategies, and granulation formation, provided possible new feasible routes to achieve mainstream short-cut nitrogen removal for efficient wastewater treatment. PRACTITIONER POINTS: Stable partial nitrification achieved in mainstream B-stage SBR under conditions distinct from previous reports. NOB out-selection confirmed by both activities' tests and molecular analysis. Thick biofilm and anaerobic side-stream reactor likely facilitated NOB suppression. Stable sludge granulation was maintained with selective wasting strategy.
Collapse
Affiliation(s)
- Zijun Meng
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Yuang Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Kenneth Wu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Zihao Zhang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Fu K, Yang W, Fu S, Bian Y, Huo A, Guan T, Li X, Zhang R, Jing H. Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123777. [PMID: 39700917 DOI: 10.1016/j.jenvman.2024.123777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification. Stirring rate is a key factor affecting sludge granulation. As a parallel experiment of sludge granulation, two Sequencing Batch Reactors (SBRs) (R1 and R2) were operated simultaneously at different stirring rates. After 153 days, the particle size of the two reactors was analyzed, revealing that the proportion of particles larger than 200 μm was over 50%, and granular sludge was successfully formed in both reactors. Long-term operational results indicate that at a temperature of 16.5 ± 1 °C, varying initial pH levels (6.5, 6.7, 7.2, and 8.5) significantly affect the removal efficiency of chemical oxygen demand (COD). COD is rapidly adsorbed and removed within a short period. Among the tested initial pH values, a pH of 6.7 yielded the best total chemical oxygen demand (tCOD) removal efficiency, achieving up to 95%. Additionally, the study examined the effects of different carbon sources on denitrification, revealing that under carbon-rich conditions, the denitrification rate was highest, reaching 1.44 mg N/(g VSS·h). Compared to endogenous denitrification, the denitrification rate increased by 40%, and the nitrate (NO₃⁻-N) removal efficiency reached 100%.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Wenbing Yang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Sibo Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yihao Bian
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Aotong Huo
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Teng Guan
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xueqin Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ruibao Zhang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hao Jing
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
4
|
Cao X, Liu T, Li X, Huang Y, Nie Q, Li M. Full-scale simultaneous partial nitrification, anammox, and denitrification for the efficient treatment of carbon and nitrogen in low-C/N wastewater. WATER RESEARCH X 2025; 26:100288. [PMID: 39717820 PMCID: PMC11665303 DOI: 10.1016/j.wroa.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
A full-scale simultaneous partial nitrification, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) reactor was initiated to address the problem of high energy consumption for the treatment of low C/N wastewater. The SNAD system achieved a nitrogen removal rate of 0.9 kg/(m3·d) at an influent NH₄+-N concentration of 500 mg/L after 450 days of stable operation. Partial nitrification was achieved by maintaining free ammonia levels at 0.8 ± 0.3 mg/L and dissolved oxygen concentrations between 0.3 mg/L and 1.2 mg/L, which resulted in synergistic nitrogen removal, with anammox contributing 61 % and denitrification contributing 39 %. Microbiological analyses indicated that the dominant microorganisms were Candidatus Brocadia, Thauera, Denitratisoma, and Nitrosomonas. In conclusion, study provides a solid foundation for the broader implementation of the SNAD process in wastewater treatment systems.
Collapse
Affiliation(s)
- Xi Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
- Suzhou Tianjun Environmental Technology Limited Company, Suzhou, 215011, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qin Nie
- Suzhou Mengze Environmental Engineering Limited Company, Suzhou, 215100, China
| | - Ming Li
- Qinhuangdao Huaheng Biological Limited Company, Qinhuangdao, 066000, China
| |
Collapse
|
5
|
Li S, Kang X, Zuo Z, Islam MS, Yang S, Liu Y, Huang X. Dynamic pH regulation drives Nitrosomonas for high-rate stable acidic partial nitritation. WATER RESEARCH 2024; 262:122078. [PMID: 39018585 DOI: 10.1016/j.watres.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
How to intensify the ammonia oxidation rate (AOR) is still a bottleneck impeding the technology development for the innovative acidic partial nitritation because the eosinophilic ammonia-oxidizing bacteria (AOB), such as Nitrosoglobus or Nitrosospira, were inhibited by the high-level free nitrous acid (FNA) accumulation in acidic environments. In this study, an innovative approach of dynamic acidic pH regulation control strategy was proposed to realize high-rate acidic partial nitritation driven by common AOB genus Nitrosomonas. The acidic partial nitrification process was carried out in a laboratory-scale sequencing batch moving bed biofilm reactor (SBMBBR) for long-term (700 days) to track the effect of dynamic acidic pH on nitrifying bacterial activity. The results indicated that the influent NH4+-N concentration was about 100 mg/L, the nitrite accumulation ratio was exceeding 90%, and the maximum AOR can reach 14.5 ± 2.6 mg N L-1h-1. Although the half-saturation inhibition constant of NOB (KI_FNA(AOB)) reached 0.37 ± 0.10 mg HNO2N/L and showed extreme adaptability in FNA, the inactivation effect of FNA (6.1 mg HNO2N/L) for NOB was much greater than that of AOB, with inactivation rates of 0.61 ± 0.08 h-1 and 0.06 ± 0.01 h-1, respectively. The effluent pH was gradually reduced to 4.5 by ammonia oxidation process and the periodic FNA concentration reached 6.5 mg HNO2N/L to inactivate nitrite-oxidizing bacteria (NOB) without negatively affecting Nitrosomonas during long-term operation. This result provides new insights for the future implementation of high-rate stabilized acidic partial nitritation by Nitrosomonas.
Collapse
Affiliation(s)
- Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaofeng Kang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhiqiang Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Md Sahidul Islam
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
6
|
Zhuang X, Wang D, Jiang C, Wang X, Yang D, Zhang W, Wang D, Xu S. Achieving partial nitrification by sludge treatment using sulfide: Optimal conditions determination, long-term stability evaluation and microbial mechanism exploration. BIORESOURCE TECHNOLOGY 2024; 408:131207. [PMID: 39098354 DOI: 10.1016/j.biortech.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
This study proposes an innovative strategy for achieving PN in synthetic domestic wastewater by side-stream sludge treatment using sulfide as the sole control factor. By conducting controllable batch experiments and response surface analysis, optimal sulfide treatment conditions were firstly determined as 90 mg/L of sulfide, 7.5 of pH, 100 rpm of rotation and 12 h of treatment time. After treatment, half of ammonia oxidizing bacteria (AOB) activity remained, but nitrite oxidizing bacteria (NOB) activity was barely detected. Nitrite accumulation rate of long-term running PN steadily reached 83.9 % with 99.1 % of ammonia removal efficiency. Sulfide treatment increased community diversity and facilitated stability of microbiota functioning with PN phenotype, which might be sustained by the positive correlation between ammonia oxidation gene (amoA) and sulfur oxidation gene (soxB). Correspondingly, the network analysis identified the keystone microbial taxa of persistent PN microbiota as Nitrosomonas, Thauera, Truepera, Defluviimonas and Sulitalea in the later stage of long-term reactor.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danhua Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weijun Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hang Zhou 310058, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Zhang F, Du Z, Wang J, Du Y, Peng Y. Acidophilic partial nitrification (pH<6) facilitates ultra-efficient short-flow nitrogen transformation: Experimental validation and genomic insights. WATER RESEARCH 2024; 260:121921. [PMID: 38924807 DOI: 10.1016/j.watres.2024.121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Partial nitrification (PN) represents an energy-efficient bioprocess; however, it often confronts challenges such as unstable nitrite accumulation, nitrite oxidizing bacteria shocks, and slow reaction rate. This study established an acidophilic PN with self-sustained pH as low as 5.36. Over 120-day monitoring, nitrite accumulation rate (NAR) was stabilized at more than 97.9 %, and an ultra-high ammonia oxidation rate of 0.81 kg/m3·d was achieved. Notably, least NAR of 77.8 % persisted even under accidental nitrite oxidizing bacteria invasion, aeration delay, alkalinity fluctuations, and cooling shocks. During processing, despite detrimental effects on bacterial diversity, there was a discernible increase in acid-tolerant bacteria responsible for nitrification. Candidatus Nitrosoglobus, gradually dominated in nitrifying guild (2.15 %), with the substantially reduction or disappearance of typical nitrifying microorganisms. Acidobacteriota, a key player in nitrogen cycling of soil, significantly increased from 0.45 % to 9.98 %, and its associated nitrogen metabolism genes showed a substantial 215 % rise. AmoB emerged as the most critical functional gene influencing acidophilic PN, exhibiting significantly higher unit gene expression than other nitrification genes. Blockade tricarboxylic acid cycle, DNA damage, and presence of free nitrous acid exert substantial effects on nitrite-oxidizing bacteria (NOB), serving as internal driving forces for acidophilic PN. This highlights the reliable potential for shortening nitrogen transformation process.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ziyi Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiahui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yujia Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Luo J, Wu Y, Fu H, Fu M, Liu M, Guo H, Jin L, Wang S. Shift in microorganism and functional gene abundance during completely autotrophic nitrogen removal over nitrite (CANON) process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121009. [PMID: 38718600 DOI: 10.1016/j.jenvman.2024.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Nitrification-denitrification process has failed to meet wastewater treatment standards. The completely autotrophic nitrite removal (CANON) process has a huge advantage in the field of low carbon/nitrogen wastewater nitrogen removal. However, slow start-up and system instability limit its applications. In this study, the time of the start-up CANON process was reduced by using bio-rope as loading materials. The establishing of graded dissolved oxygen improved the stability of the CANON process and enhanced the stratification effect between functional microorganisms. Microbial community structure and the abundance of nitrogen removal functional genes are also analyzed. The results showed that the CANON process was initiated within 75 days in the complete absence of anaerobic ammonium oxidizing bacteria (AnAOB) inoculation. The ammonium and nitrogen removal efficiencies of CANON process reached to 94.45% and 80.76% respectively. The results also showed that the relative abundance of nitrogen removal bacterial in the biofilm gradually increases with the dissolved oxygen content in the solution decreases. In contrast, the relative abundance of ammonia oxidizing bacteria was positively correlated with the dissolved oxygen content in the solution. The relative abundance of g__Candidatus_Brocadia in biofilm was 15.56%, and while g__Nitrosomonas was just 0.6613%. Metagenomic analysis showed that g__Candidatus_Brocadia also contributes 66.37% to the partial-nitrification functional gene Hao (K10535). This study presented a new idea for the cooperation between partial-nitrification and anammox, which improved the nitrogen removal system stability.
Collapse
Affiliation(s)
- Jiajun Luo
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Yicheng Wu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Haiyan Fu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China.
| | - Muxing Fu
- Xiamen Zhongrenhemei Biotechnology Co., Xiamen, 361024, China
| | - Mian Liu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Huibin Guo
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Lei Jin
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | | |
Collapse
|
9
|
Wang Z, Liang H, Yan Y, Li X, Zhang Q, Peng Y. Stimulating extracellular polymeric substances production in integrated fixed-film activated sludge reactor for advanced nitrogen removal from mature landfill leachate via one-stage double anammox. BIORESOURCE TECHNOLOGY 2024; 391:129968. [PMID: 37925083 DOI: 10.1016/j.biortech.2023.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Introducing carbon sources to achieve nitrogen removal from mature landfill leachate not only increases the costs and carbon emissions but also inhibits the activity of autotrophic bacteria. Thus, this study constructed a double anammox system that combines partial nitrification-anammox (PNA) and endogenous partial denitrification-anammox (EPDA) within an integrated fixed-film activated sludge (IFAS) reactor. In this system, PNA primarily contributes to nitrogen removal pathways, achieving a nitrite accumulation rate of 98.23%. The production of extracellular polymer substances (EPS) in the IFAS reactor is stimulated by introducing co-fermentation liquid. Through the utilization of EPS, the system effectively achieves EPDA with the nitrite transformation rate of 97.20%. Under the intermittent aeration operation strategy, EPDA combined with PNA and anammox in the oxic and anoxic stages enhanced the nitrogen removal efficiency of the system to 99.70 ± 0.12%. The functional genus Candidatus kuenenia became enriched in biofilm sludge, while Thauera and Nitrosomonas predominated in floc sludge.
Collapse
Affiliation(s)
- Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
10
|
Kang D, Zhao X, Yuan J, Wang N, Suo Y, Peng Y. Nitrite accumulation in activated sludge through cyclic anaerobic exposure with acetate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119005. [PMID: 37717392 DOI: 10.1016/j.jenvman.2023.119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Achieving nitrite accumulation still remains challenging for efficient short-cut biological nitrogen removal in municipal wastewater treatment. To tackle the problem of insufficient carbon in incoming wastewater for biological nutrient removal, a return activated sludge (RAS) fermentation method has been proposed and demonstrated to enable producing supplemental volatile fatty acids (VFAs) and enhance biological phosphorus removal via sludge cycling between mainstream and a sidestream anaerobic reactor. However, the impacts of long anaerobic exposure with acetate on nitrifying bacteria, known as the aerobic chemoautotrophic microorganisms, remains unexplored. In this study, the activated sludge underwent a cyclic anaerobic treatment with the addition of acetate (Ac), the effects on nitrification rate, abundance and microdiversity of nitrifying communities were comprehensively assessed. Firstly, batch activity tests proved the direct addition of high acetate (above 1000 mg/L) could cause inhibition on the nitrification rate, moreover, the inhibitory effect was stronger on nitrite-oxidizing bacteria (NOB) activity than that of ammonia-oxidizing bacteria (AOB). Then, a sequencing batch reactor (SBR) was applied to test the nitrogen conversion performance for low-strength ammonium wastewater. Nitrite accumulation could be achieved via the cyclic anaerobic exposure with 1000-5000 mg Ac/L. The maximum effluent concentration of nitrite was 40.8 ± 3.5 mg N/L with nitrite accumulation ratio (NAR) of 67.6 ± 3.5%. The decrease in NOB activity (72.7%) was greater than AOB of 42.4%, promoting nitrite accumulation via nitritation process. Furthermore, the cyclic anaerobic exposure with acetate can largely reshape the nitrifying communities. As the dominant AOB and NOB, the abundance of Nitrosomonas and Nitrospira were both decreased with species-level microdiversity in the nitrifying communities. However, the heterotrophic microorganism, Thauera, were found to be highly enriched (from 0 to 17.3%), which may act as the potential nitrite producer as proved by the increased nitrate reduction gene abundance. This study can provide new insights into achieving mainstream nitrite accumulation by involving sidestream RAS fermentation towards efficient wastewater treatment management.
Collapse
Affiliation(s)
- Da Kang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China.
| | - Xuwei Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| | - Jiawei Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| | - Nan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| | - Yirui Suo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| |
Collapse
|
11
|
Zhu W, Van Tendeloo M, De Paepe J, Vlaeminck SE. Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 387:129607. [PMID: 37544532 DOI: 10.1016/j.biortech.2023.129607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 °C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 ± 2.6 mg NH3-N L-1) or FNA (3.1 ± 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.
Collapse
Affiliation(s)
- Weiqiang Zhu
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Michiel Van Tendeloo
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Jolien De Paepe
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
12
|
Liao R, Song Z, Zhang J, Xing D, Yan S, Dong W, Sun F. Pilot-scale treatment of municipal garbage mechanical dewatering wastewater by an integrated system involving partial nitrification and denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117088. [PMID: 36584508 DOI: 10.1016/j.jenvman.2022.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The municipal solid waste (MSW) with high water content can be pre-treated by the mechanical dewatering technology to significantly decrease the leachate generation in sequential landfill treatment or to improve the efficiency for solid waste incineration, which has attracted great concerns recently. However, the generated mechanical dewatering wastewater (MDW) containing high organics and nitrogenous content has been one of the big challenges for the sustainable treatment of MSW. In this study, a pilot-scale integrated system composed of physiochemical pretreatment, anaerobic sequencing batch reactor (ASBR), partial nitrification SBR (PN-SBR), denitrification SBR (DN-SBR), and UV/O3 advanced oxidation process, with a capacity of 1.0 m3/d to treat MDW containing over 34000 mg-chemical oxygen demand (COD)/L organics pollutant and 850 mg/L NH4+-N, was successfully developed. By explorations on the start-up of this integrated system and the process conditions optimization, after a long-term system operation, the findings demonstrated that this integrated system could reach the removal efficiency in the COD, NH4+-N and total nitrogen (TN) in the MDW of 99.7%, 98.2% and 96.9%, respectively. Partial nitrification and denitrification were successfully obtained for the TN removal with the nitrite accumulation rate of over 80%. The treatment condition parameters were optimized to be 800 mg/L polyaluminum chloride (PAC) and 2 mg/L polyacrylamide (PAM) under a pH of 9 for pretreatment, 36 h hydraulic retention time (HRT) for ASBR, 24 h for PN-SBR, and 2 h for UV/O3 unit. The organic sources in the MDW were also found to be feasible for the DN-SBR. Consequently, the resulting final effluent was stably in compliance with the discharge standard with high stability and reliability.
Collapse
Affiliation(s)
- Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zi Song
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jianjun Zhang
- Shenzhen Municipal Design & Research Institute Co. Ltd., China
| | - Dingyu Xing
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Sibo Yan
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Antileo C, Jaramillo F, Candia O, Osorio A, Muñoz C, Farías J, Proal-Nájera JB, Zhang Q, Geissen SU. Long-term nitrite-oxidizing bacteria suppression in a continuous activated sludge system exposed to frequent changes in pH and oxygen set-points. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115545. [PMID: 35752006 DOI: 10.1016/j.jenvman.2022.115545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Research has proven the adaptation of nitrite-oxidizing bacteria to unfavorable environmental conditions, and this work presents a novel concept to prevent nitrite oxidation during partial nitrification in wastewater. The approach is based on the real-time updating of mathematical models of the process to search for optimal set-points of pH and oxygen concentration in a continuous activated sludge reactor with a high sludge age (20.3 days). A heuristic optimization technique by 13 optimum set-points simultaneously maximized the degree of ammonia oxidation (α) and nitrite accumulation (β), achieving an (α + β) = 190% per day. The activated sludge reactor was conducted for 780 days under three control schemes: open-loop control, fuzzy model supervisory control and phenomenological supervisory control. The phenomenological supervisory control system achieved the best results, simultaneously reaching 95% ammonium oxidation and 90% nitrite accumulation. The Haldane kinetics were analyzed using steady-state concentrations of all nitrogen species, concluding that the simultaneous maximization of α + β led to selecting set-points at the extreme values of the following ranges: pH = 7.5-8.5 and DO = 0.8-1.0 mg O2/L, which enabled the inhibition of one nitrifier species. At the same time, the other one was relieved from inhibition. The 16sRNA assays indicated that the nitrite-oxidizing bacteria presence (genera Nitrobacter and Nitrospira) shifted from 32% to less than 8% after 280 days of continuous operation with optimal pH and oxygen set-points.
Collapse
Affiliation(s)
- Christian Antileo
- Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - Francisco Jaramillo
- Department of Electrical Engineering, Faculty of Physical and Mathematical Sciences, University of Chile, Av. Tupper 2007, Santiago, Chile.
| | - Oscar Candia
- Facultad de Ingeniería, Universidad Autónoma de Chile, 5 Poniente 1670, Talca, Chile.
| | - Aahilyn Osorio
- Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - Carlos Muñoz
- Department of Electrical Engineering, Faculty of Engineering and Sciences, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - Jorge Farías
- Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - José B Proal-Nájera
- Instituto Politécnico Nacional, CIIDIR-Unidad Durango, Calle Sigma 119, Fracc. 20 de Noviembre II, Durango, Dgo., C.P. 34220, Mexico.
| | - Qiqi Zhang
- Department of Environmental Technology, Technische Universität Berlin, 10623, Berlin, Germany.
| | - Sven-Uwe Geissen
- Department of Environmental Technology, Technische Universität Berlin, 10623, Berlin, Germany.
| |
Collapse
|
14
|
Hausherr D, Niederdorfer R, Bürgmann H, Lehmann M, Magyar P, Mohn J, Morgenroth E, Joss A. Successful year-round mainstream partial nitritation anammox: Assessment of effluent quality, performance and N 2O emissions. WATER RESEARCH X 2022; 16:100145. [PMID: 35789883 PMCID: PMC9250041 DOI: 10.1016/j.wroa.2022.100145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/17/2022] [Accepted: 06/15/2022] [Indexed: 05/04/2023]
Abstract
For two decades now, partial nitritation anammox (PNA) systems were suggested to more efficiently remove nitrogen (N) from mainstream municipal wastewater. Yet to date, only a few pilot-scale systems and even fewer full-scale implementations of this technology have been described. Process instability continues to restrict the broad application of PNA. Especially problematic are insufficient anammox biomass retention, the growth of undesired aerobic nitrite-oxidizers, and nitrous oxide (N2O) emissions. In this study, a two-stage mainstream pilot-scale PNA system, consisting of three reactors (carbon pre-treatment, nitritation, anammox - 8 m3 each), was operated over a year, treating municipal wastewater. The aim was to test whether both, robust autotrophic N removal and high effluent quality, can be achieved throughout the year. A second aim was to better understand rate limiting processes, potentially affecting the overall performance of PNA systems. In this pilot study, excellent effluent quality, in terms of inorganic nitrogen, was accomplished (average effluent concentrations: 0.4 mgNH4-N/L, 0.1 mgNO2-N/L, 0.9 mgNO3-N/L) even at wastewater temperatures previously considered problematic (as low as 8 °C). N removal was limited by nitritation rates (84 ± 43 mgNH4-N/L/d), while surplus anammox activity was observed at all times (178 ± 43 mgN/L/d). Throughout the study, nitrite-oxidation was maintained at a low level (<2.5% of ammonium consumption rate). Unfortunately, high N2O emissions from the nitritation stage (1.2% of total nitrogen in the influent) were observed, and, based on natural isotope abundance measurements, could be attributed to heterotrophic denitrification. In situ batch experiments were conducted to identify the role of dissolved oxygen (DO) and organic substrate availability in N2O emission-mitigation. The addition of organic substrate, to promote complete denitrification, was not successful in decreasing N2O emission, but increasing the DO from 0.3 to 2.9 mgO2/L decreased N2O emissions by a factor of 3.4.
Collapse
Affiliation(s)
- D. Hausherr
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Corresponding author:
| | - R. Niederdorfer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - H. Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - M.F. Lehmann
- Department of Environmental Sciences, University of Basel, Aquatic and Isotope Biogeochemistry, Basel 4056, Switzerland
| | - P. Magyar
- Department of Environmental Sciences, University of Basel, Aquatic and Isotope Biogeochemistry, Basel 4056, Switzerland
| | - J. Mohn
- Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Air Pollution / Environmental Technology, Dübendorf 8600, Switzerland
| | - E. Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - A. Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
15
|
Wang H, Chen C, Yang E, Tu Z, Liang J, Dai X, Chen H. Revealing the effect of biofilm formation in partial nitritation-anammox systems: Start-up, performance stability, and recovery. BIORESOURCE TECHNOLOGY 2022; 357:127379. [PMID: 35642853 DOI: 10.1016/j.biortech.2022.127379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Successful application of partial nitritation-anammox (PNA) processes is currently and primarily associated with biofilm systems. Biofilm characteristics significantly influence start-up, performance stability, and recovery. Here, two PNA systems with and without carriers were implemented simultaneously for treating wastewater containing 50 mg-NH4/L. The performance characteristics of these two PNA systems were compared. Stable nitrogen removal efficiencies of 76.3 ± 2.8% and 72.9 ± 1.6% were obtained for suspended sludge and biofilm systems, respectively. The slow process of biofilm colonization resulted in a long start-up time in the biofilm system. Biofilm enrichment and protection conferred stable performance when exposed to aeration shock. The suspended sludge system displayed good elasticity during performance recovery after shock compared to the slow recovery in the biofilm system. Moreover, suitable control of dissolved oxygen could improve the activity and abundance of the functional microbes. This study provides new insights into the operation and control of PNA systems for treating mainstream wastewater.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Chen
- Changsha Social Work College, Changsha 410004, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|