1
|
Song Y, Wu D, Ju X, Dörsch P, Wang M, Wang R, Song X, Deng L, Wang R, Gao Z, Haider H, Hou L, Liu M, Yu Y. Nitrite stimulates HONO and NO x but not N 2O emissions in Chinese agricultural soils during nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166451. [PMID: 37611720 DOI: 10.1016/j.scitotenv.2023.166451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
The long-lived greenhouse gas nitrous oxide (N2O) and short-lived reactive nitrogen (Nr) gases such as ammonia (NH3), nitrous acid (HONO), and nitrogen oxides (NOx) are produced and emitted from fertilized soils and play a critical role for climate warming and air quality. However, only few studies have quantified the production and emission potentials for long- and short-lived gaseous nitrogen (N) species simultaneously in agricultural soils. To link the gaseous N species to intermediate N compounds [ammonium (NH4+), hydroxylamine (NH2OH), and nitrite (NO2-)] and estimate their temperature change potential, ex-situ dry-out experiments were conducted with three Chinese agricultural soils. We found that HONO and NOx (NO + NO2) emissions mainly depend on NO2-, while NH3 and N2O emissions are stimulated by NH4+ and NH2OH, respectively. Addition of 3,4-dimethylpyrazole phosphate (DMPP) and acetylene significantly reduced HONO and NOx emissions, while NH3 emissions were significantly enhanced in an alkaline Fluvo-aquic soil. These results suggested that ammonia-oxidizing bacteria (AOB) and complete ammonia-oxidizing bacteria (comammox Nitrospira) dominate HONO and NOx emissions in the alkaline Fluvo-aquic soil, while ammonia-oxidizing archaea (AOA) are dominant in the acidic Mollisol. DMPP effectively mitigated the warming effect in the Fluvo-aquic soil and the Ultisol. In conclusion, our findings highlight NO2- significantly stimulates HONO and NOx emissions from dryland agricultural soils, dominated by nitrification. In addition, subtle differences of soil NH3, N2O, HONO, and NOx emissions indicated different N turnover processes, and should be considered in biogeochemical and atmospheric chemistry models.
Collapse
Affiliation(s)
- Yaqi Song
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Xiaotang Ju
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Mengdi Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ruhai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaotong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Deng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiwei Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Haroon Haider
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yuanchun Yu
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Gong JC, Li BH, Hu JW, Li PF, Liu Q, Yang GP, Liu CY. Driving force of tidal pulses on denitrifiers-dominated nitrogen oxide emissions from intertidal wetland sediments. WATER RESEARCH 2023; 247:120770. [PMID: 37897991 DOI: 10.1016/j.watres.2023.120770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Intertidal wetland sediments are an important source of atmospheric nitrogen oxides (NOx), but their contribution to the global NOx budget remains unclear. In this work, we conducted year-round and diurnal observations in the intertidal wetland of Jiaozhou Bay to explore their regional source-sink patterns and influence factors on NOx emissions (initially in the form of nitric oxide) and used a dynamic soil reactor to further extend the mechanisms underlying the tidal pulse of nitric oxide (NO) observed in our investigations. The annual fluxes of NOx in the vegetated wetland were significantly higher than those in the wetland without vegetation. Their annual variations could be attributed to changes in temperature and the amount of organic carbon in the sediment, which was derived from vegetated plants and promoted the carbon-nitrogen cycle. Anaerobic denitrifiers had advantages in the intertidal wetland sediment and accounted for the major NO production (63.8 %) but were still limited by nitrite and nitrate concentrations in the sediment. Moreover, the tidal pulse was likely a primary driver of NOx emissions from intertidal wetlands over short periods, which was not considered in previous investigations. The annual NO exchange flux considering the tide pulse contribution (8.93 ± 1.72 × 10-2 kg N ha-1 yr-1) was significantly higher than that of the non-pulse period (4.14 ± 1.13 × 10-2 kg N ha-1 yr-1) in our modeling result for the fluxes over the last decade. Therefore, the current measurement of NOx fluxes underestimated the actual gas emission without considering the tidal pulse.
Collapse
Affiliation(s)
- Jiang-Chen Gong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bing-Han Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jing-Wen Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Pei-Feng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Qian Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Cui M, Yang B, Ren G, Yu H, Dai Z, Li J, Ran Q, Stevanato P, Wan J, Du D. Effects of Warming, Phosphorous Deposition, and Both Treatments on the Growth and Physiology of Invasive Solidago canadensis and Native Artemisia argyi. PLANTS (BASEL, SWITZERLAND) 2023; 12:1370. [PMID: 36987058 PMCID: PMC10051919 DOI: 10.3390/plants12061370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Anthropogenic climate change and species invasion are two major threats to biodiversity, affecting the survival and distribution of many species around the world. Studying the responses of invasive species under climate change can help better understand the ecological and genetic mechanisms of their invasion. However, the effects of warming and phosphorus deposition on the phenotype of native and invasive plants are unknown. To address the problem, we applied warming (+2.03 °C), phosphorus deposition (4 g m-2 yr-1 NaH2PO4), and warming × phosphorus deposition to Solidago canadensis and Artemisia argyi to measure the direct effects of environmental changes on growth and physiology at the seedling stage. Our results reveal that the physiology parameters of A. argyi and S. canadensis did not change significantly with the external environment. Under phosphorus deposition, S. canadensis had higher plant height, root length, and total biomass compared to A. argyi. Interestingly, warming has an inhibitory effect on the growth of both A. argyi and S. canadensis, but overall, the reduction in total biomass for S. canadensis (78%) is significantly higher than A. argyi (52%). When the two plants are treated with warming combined with phosphorus deposition, the advantage gained by S. canadensis from phosphorus deposition is offset by the negative effects of warming. Therefore, under elevated phosphorus, warming has a negative effect on the invasive S. canadensis and reduces its growth advantage.
Collapse
Affiliation(s)
- Miaomiao Cui
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Yang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haochen Yu
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhicong Dai
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Li
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiong Ran
- School of Management, Chongqing University of Technology, Chongqing 400050, China
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35122 Padova, Italy
| | - Justin Wan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Spartina alterniflora Invasion Enhances Dissimilatory Nitrate Reduction to Ammonium (DNRA) Rates in the Yangtze River Estuary, China. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) can save N by converting nitrate into ammonium and avoiding nitrate leaching and runoff in saltmarshes. However, little is known about the effects of invasive plants on DNRA in the upper and deeper soil layers in salt marshes. Here, we investigated DNRA rates in the soils of six different depth layers (0–5, 5–10, 10–20, 20–30, 30–50, and 50–100 cm) from the invasive Spartina alterniflora marshland, two native plants Scirpus mariqueter and Phragmites australis marshlands, and bare mudflat on Chongming Island, located in the Yangtze River Estuary, China. Our results show that S. alterniflora significantly increased DNRA rates in both the upper 50 cm soil and deeper 50–100 cm soil layers. With respect to the entire soil profile, the NO3− reduction content calculated from DNRA in S. alterniflora marshland was 502.84 g N m−2 yr−1, increased by 47.10%, 49.42%, and 38.57% compared to bare mudflat, S. mariquete, and P. australis, respectively. Moreover, NO3− reduction content from the 50–100 cm soil layers was almost identical to that in the upper 50 cm of the soil. In the month of May, DNRA is primarily regulated by SO42− and pH in the upper and deeper soil layers, respectively, whereas, in the month of October, soil pH accounted for the most variables of DNRA in both the upper and deeper soil layers. Altogether, these results from a new perspective confirm that S. alterniflora invasion increases soil N pool and may further push its invasion in salt marshes, and the importance of deeper soil in nitrogen cycling cannot be ignored.
Collapse
|