1
|
Song D, Du H, Chen S, Han X, Wang L, Li Y, Liu C, Zhang W, Ma J. A Gravity-Driven Membrane Bioreactor in Treating Real Fruit Juice Wastewater: Response Relationship Between Filtration Behavior and Microbial Community Evolution. MEMBRANES 2024; 14:260. [PMID: 39728710 DOI: 10.3390/membranes14120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.01 to 0.04 MPa without requiring backwashing or chemical cleaning, with the aim of investigating flux development and contaminant removal under low-energy conditions. The results demonstrate an initial decrease in flux followed by stabilization during long-term filtration. Moreover, the stabilized flux level achieved with the GDMBR at pressures of 0.01 and 0.02 MPa was observed to surpass that obtained at 0.04 MPa, ranging from 4 to 4.5 L/m-2 h-1. The stability of flux was positively associated with the low membrane fouling resistance observed in the GDMBR system. Additionally, the GDMBR system provided remarkable efficiencies in removing the chemical oxygen demand (COD), biological oxygen demand (BOD), ammonia (NH4+-N), and total nitrogen (TN), with average removal rates of 82%, 80%, 83%, and 79%, respectively. The high biological activity and microbial community diversity within the sludge and biofilm are expected to enhance its biodegradation potential, thereby contributing to the efficient removal of contaminants. Notably, a portion of total phosphorus (TP) can be effectively retained in the reactor, which highlighted the promising application of the GDMBR process for actual fruit juice wastewater based on these findings.
Collapse
Affiliation(s)
- Dan Song
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Haiyao Du
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shichun Chen
- PetroChina Harbin Petrochemical Company, Harbin 150056, China
| | - Xiaodie Han
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Lu Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yonggang Li
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, China
| | - Caihong Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jun Ma
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
2
|
Ji Z, Wang J, Yan Z, Liu C, Liu Z, Chang H, Qu F, Liang H. Gravity-driven membrane integrated with membrane distillation for efficient shale gas produced water treatment. WATER RESEARCH 2024; 266:122332. [PMID: 39216126 DOI: 10.1016/j.watres.2024.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Substantial volumes of hazardous shale gas produced water (SGPW) generated in unconventional natural gas exploration. Membrane distillation (MD) is a promising approach for SGPW desalination, while membrane fouling, wetting, and permeate deterioration restrict MD application. The integration of gravity-driven membrane (GDM) with MD process was proposed to improve MD performance, and different pretreatment methods (i.e., oxidation, coagulation, and granular filtration) were systematically investigated. Results showed that pretreatment released GDM fouling and improved permeate quality by enrich certain microbes' community (e.g., Proteobacteria and Nitrosomonadaceae), greatly ensured the efficient desalination of MD. Pretreatment greatly influences GDM fouling layer morphology, leading to different flux performance. Thick/rough/hydrophilic fouling layer formed after coagulation, and thin/loose fouling layer formed after silica sand filtration improved GDM flux by 2.92 and 1.9 times, respectively. Moreover, the beneficial utilization of adsorption-biodegradation effects significantly enhanced GDM permeate quality. 100 % of ammonia and 53.99 % of UV254 were efficiently removed after zeolite filtration-GDM and granular activated carbon filtration-GDM, respectively. Compared to the surged conductivity (41.29 μS/cm) and severe flux decline (>82 %) under water recovery rate of 75 % observed in single MD for SGPW treatment, GDM economically controlled permeate conductivity (1.39-19.9 μS/cm) and MD fouling (flux decline=8.3 %-27.5 %). Exploring the mechanisms, the GDM-MD process has similarity with Janus MD membrane in SGPW treatment, significantly reduced MD fouling and wetting.
Collapse
Affiliation(s)
- Zhengxuan Ji
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiaxuan Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhe Liu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, 710055, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Han J, Jia J, Hu X, Sun L, Ulbricht M, Lv L, Ren Z. Effect of magnetic field coupled magnetic biochar on membrane bioreactor efficiency, membrane fouling mitigation and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172549. [PMID: 38643881 DOI: 10.1016/j.scitotenv.2024.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.
Collapse
Affiliation(s)
- Jinlong Han
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jianna Jia
- Tianjin Research Institute for Water Transport Engineering, M.O.T., China
| | - Xiangjia Hu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Wuqing District Environmental Protection Bureau, Tianjin, 301700, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
4
|
Hube S, Veronelli S, Li T, Burkhardt M, Brynjólfsson S, Wu B. Microplastics affect membrane biofouling and microbial communities during gravity-driven membrane filtration of primary wastewater. CHEMOSPHERE 2024; 353:141650. [PMID: 38462183 DOI: 10.1016/j.chemosphere.2024.141650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Recently, gravity-driven membrane (GDM) filtration has been adopted as an alternative solution for decentralized wastewater treatment due to easy installation and maintenance, reduced energy and operation cost, and low global warming impact. This study investigated the influence of microplastic size (0.5-0.8 μm and 40-48 μm) and amount (0.1 and 0.2 g/L) on the membrane performance and microbial community in GDM systems for primary municipal wastewater treatment. The results showed that dosing microplastics in the GDM systems led to 9-54% lower permeate flux than that in the control. This was attributed to more cake formation (up to 6.4-fold) with more deposition of extracellular polymeric substances (EPS, up to 1.5-fold) and divalent cations (up to 2.1-fold) in the presence of microplastics, especially with increasing microplastic amount or size. However, the dosed microplastics promoted formation of heterogeneous cake layers with more porous nature, possibly because microplastics created void space in the cake and also tended to bind with divalent cations to reduce EPS-divalent cations interactions. In the biofilm of the GDM systems, the presence of microplastics could lower the number of total species, but it greatly enhanced the abundance of certain dominant prokaryotes (Phenylobacterium haematophilum, Planctomycetota bacterium, and Flavobacteriales bacterium), eukaryotes (Stylonychia lemnae, Halteria grandinella, and Paramicrosporidium saccamoebae), and virus (phylum Nucleocytoviricota), as well as amino acid and lipid metabolic functions. Especially, the small-size microplastics at a higher dosed amount led to more variations of microbial community structure and microbial metabolic functions.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Stefanie Veronelli
- Institute of Environmental and Process Engineering (UMTEC), Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Michael Burkhardt
- Institute of Environmental and Process Engineering (UMTEC), Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland.
| |
Collapse
|
5
|
Pan W, Ouyang H, Tan X, Yan S, Zhang R, Deng R, Gu L, He Q. Effects of biochar addition towards the treatment of blackwater in anaerobic dynamic membrane bioreactor (AnDMBR): Comparison among room temperature, mesophilic and thermophilic conditions. BIORESOURCE TECHNOLOGY 2023; 374:128776. [PMID: 36822557 DOI: 10.1016/j.biortech.2023.128776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Effects of biochar addition on the performance of anaerobic dynamic membrane bioreactor (AnDMBR) under different temperatures for blackwater treatment was investigated. When the organic load ratios (OLR) was 1.0 g COD/L·d, the specific methane yield for the three biochar-amended reactors were 125.7, 148.0 and 182.3 mLCH4/g CODremoved, respectively. Compare to those digesters without biochar participation, the methane production in the thermophilic reactor with biochar increased by 12% while the other two digesters increased by 6-10%. An analysis of membrane filtration resistance showed a reduction in total resistance (Rt) of 6.2 × 1011-7.3 × 1011 m-1 when biochar was added to the three reactors. The thermophilic reactors with biochar increased the relative abundance of Methanothermobacter and promoted gene expression of metabolic pathways related to hydrolysis, acid production and methane production. Overall, biochar showed great potential as an inexpensive conductive material to increase methane production with reduced membrane fouling in AnDMBR systems.
Collapse
Affiliation(s)
- Weiliang Pan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China.
| | - Honglin Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Xiuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Shanji Yan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Ruihao Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
6
|
Ye M, Li YY. Methanogenic treatment of dairy wastewater: A review of current obstacles and new technological perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161447. [PMID: 36621500 DOI: 10.1016/j.scitotenv.2023.161447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Methanogenic treatment can effectively manage wastewater in the dairy industry. However, its treatment efficiency and stability are problematic due to the feature of wastewater. This review comprehensively summarizes the dairy wastewater characteristics and reveals the mechanisms and impacts of three critical issues in anaerobic treatment, including ammonia and long-chain fatty acid (LCFA) inhibition and trace metal (TM) deficiency. It evaluates current remedial strategies and the implementation of anaerobic membrane bioreactor (AnMBR) technology. It assesses the use of nitrogen-removed effluent return to dilute the influent for solving protein-rich dairy wastewater treatment. It explores the methodology of TM addition to dairy wastewater in accordance with microbial TM content and proliferation. It analyzes the multiple benefits of applying high-solid AnMBR to lipid-rich influent to mitigate LCFA inhibition. Finally, it proposes a promising low-carbon treatment system with enhanced bioenergy recovery, nitrogen removal, and simultaneous phosphorus recovery that could promote carbon neutrality for dairy industry wastewater treatment.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Wang G, Liu G, Yao G, Fu P, Sun C, Li Y, Li Q, Li YY, Chen R. Biochar-assisted anaerobic membrane bioreactor towards high-efficient energy recovery from swine wastewater: Performances and the potential mechanisms. BIORESOURCE TECHNOLOGY 2023; 369:128480. [PMID: 36513307 DOI: 10.1016/j.biortech.2022.128480] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
A high-efficient energy recovery system of biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was established for swine wastewater treatment. Comparing with a conventional AnMBR, biochar addition accelerated volatile fatty acids (VFA) degradation during start-up stage, thereby shortened start-up duration by 44.0 %. Under a high organic loading rate (OLR) of 21.1 gCOD/L/d, BC-AnMBR promoted COD removal efficiency from 90.1 % to 95.2 %, and maintained a high methane production rate of 4.8L CH4/L/d. The relative abundance of Methanosaeta declined from 53.9 % in conventional AnMBR to 21.0 % in BC-AnMBR, whereas that of Methanobrevibacter dramatically increased from 10.3 % to 70.9 %, respectively. Metabolic pathway analysis revealed that biochar not only strengthened hydrogenotrophic methanogenesis pathway, but also upregulated the genes encoding electron transfer carriers and riboflavin metabolism, suggesting the role of biochar facilitating direct interspecies electron transfer for syntrophic methanogenesis. The excellent energy yield performances under high OLR confirmed BC-AnMBR as an advanced system for high-strength swine wastewater treatment.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Changxi Sun
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
8
|
Zhou L, Zhao B, Lin Y, Shao Z, Zeng R, Shen Y, Zhang W, Jian Y, Zhuang WQ. Identification of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in the dynamic cake layer of a full-scale anoixc dynamic membrane bioreactor for treating hotel laundry wastewater. CHEMOSPHERE 2022; 307:136078. [PMID: 35985382 DOI: 10.1016/j.chemosphere.2022.136078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Identification of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in the dynamic cake layer of a full-scale anoixc dynamic membrane bioreactor (AnDMBR) for treating hotel laundry wastewater was studied. A series of experiments were conducted to understand the contributions of DNRA and canonical denitrification activities in the dynamic cake layer of the AnDMBR. The dynamic cake layer developed included two phases - a steady transmembrane pressure (TMP) increase at 0.24 kPa/day followed by a sharp TMP jump at 1.26 kPa/day four to five days after the AnDMBR start-up. The nitrogen mass balance results showed that canonical denitrification was predominant during the development of the dynamic cake layer. However, DNRA activity and accumulation of bacteria equipped with a complete DNRA pathway showed a positive correlation to the development of the dynamic cake layer. Our metagenomic analysis identified an approximately 18% of the dynamic cake layer bacterial community has a complete DNRA pathway. Pannonibacter (1%), Thauera (0.8%) and Pseudomonas (3%) contained all genes encoding for funcional enzymes of both DNRA (nitrate reductase and DNRA nitrite reductase) and denitrification (nitrate reductase, nitrous oxide reductase and nitric oxide reductase). No other metagenome-assembled genomes (MAGs) possessed a complete cononical denitrification pathway, indicating food-chain-like interactions of denitrifiers in the dynamic cake layer. We found that COD loading rate could be used to control DNRA and canonical denitrification activities during the dynamic cake layer formation.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanzhong Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiyuan Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rongjie Zeng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yichang Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yixin Jian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
9
|
Jiao C, Hu Y, Zhang X, Jing R, Zeng T, Chen R, Li YY. Process characteristics and energy self-sufficient operation of a low-fouling anaerobic dynamic membrane bioreactor for up-concentrated municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156992. [PMID: 35772537 DOI: 10.1016/j.scitotenv.2022.156992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
Up-concentration of municipal wastewater using physico-chemical methods can effectively enrich organic matter, facilitating subsequent anaerobic digestion of up-concentrated wastewater for enhanced methanogenesis at reduced energy consumption. An anaerobic dynamic membrane bioreactor (AnDMBR) assisted with biogas-sparging was developed to treat up-concentrated municipal wastewater, focusing on the effects of operating temperature and hydraulic retention time (HRT) as well as COD mass balance and energy balance. The COD removal stabilized at about 98 % over the experimental period, while gaseous and dissolved methane contributed 43-49 % and 2-3 % to the influent COD reducing greenhouse gas emissions. The formed dynamic membrane exists mainly as a heterogeneous cake layer with a uneven distribution feature, ensuring the stable effluent quality. Without adopting any physico-chemical cleaning, the transmembrane pressure (TMP) maintained at a low range (2.7 to 14.67 kPa) with the average TMP increasing rate of 0.089 kPa/d showing a long-term low-fouling operation. Increasing the concentration ratio, the methane production rate decreased from 0.18 to 0.15 L CH4/gCOD likely due to the accumulation of particulate organics. Microbial community analysis indicated the predominant methanogenic pathway shifted from hydrogenotrophic to acetoclastic methanogenesis in response to the temperature change. Net energy balance (0.003-0.600 kWh/m3) can be achieved only under room temperature (25 °C) rather than mesophilic conditions (36 °C).
Collapse
Affiliation(s)
- Chengfan Jiao
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China.
| | - Xiaoling Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruosong Jing
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ting Zeng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
10
|
Zhang Z, Zhang H, Al-Gabr HM, Jin H, Zhang K. Performances and enhanced mechanisms of nitrogen removal in a submerged membrane bioreactor coupled sponge iron system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115505. [PMID: 35753132 DOI: 10.1016/j.jenvman.2022.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Sponge iron is a potential material for nitrogen removal, but lack of a study about nitrogen removal in a membrane bioreactor (MBR) coupled with sponge iron. The performances and mechanisms of nitrogen removal of SI-MBR were investigated and compared it with that in GAC-MBR. The results showed that the average rate of organic matter removal in the SI-MBR was 92.74%, which was higher than that in the GAC-MBR (87.48%). And the average effluent NO2--N and NO3--N concentration in the SI-MBR (0.02 mg/L and 3.73 mg/L) was lower than that in the GAC-MBR (0.05 mg/L and 7.51 mg/L). Meanwhile, the highest nitrification rate and denitrification rate was respectively 3.544 ± 0.25 mg/(g VSS·h) and 6.643 ± 0.2 mg/(g VSS·h) in the SI-MBR, which was higher than that (3.094 ± 0.25 mg/(g VSS·h) and (6.376 ± 0.2 mg/(g VSS·h)) in the GAC-MBR. Additionally, the bacterial activities (e.g., DHA activity and respiratory activity) were obviously enhanced through the iron ion from sponge iron. The bacterial community in the SI-MBR system was more richness and diverse than that in the GAC-MBR. Ultimately, the mechanisms of enhanced biological nitrogen removal with sponge iron in MBR were analyzed. On the surface of sponge iron, the DIRB and FOB could use the iron ion from sponge iron as the electron transfer to improve the nitrogen and organic removal. With sponge iron, there is not only the nitrification bacteria and heterotrophic denitrifying microorganism enriched, but also the autotrophic denitrifying bacteria abounded obviously. The autotrophic denitrifying bacteria could use Fe(II) as an electron donor to achieve denitrification and enhance the nitrogen removal.
Collapse
Affiliation(s)
- Zhuowei Zhang
- NingboTech University, 315000, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | |
Collapse
|
11
|
Lei Z, Zhang S, Wang L, Li Q, Li YY, Wang XC, Chen R. Biochar enhances the biotransformation of organic micropollutants (OMPs) in an anaerobic membrane bioreactor treating sewage. WATER RESEARCH 2022; 223:118974. [PMID: 35988338 DOI: 10.1016/j.watres.2022.118974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The removal of emerging organic micropollutants (OMPs) in anaerobic membrane bioreactors (AnMBRs) has garnered considerable attention owing to the rapid development of AnMBR technology and the increased environmental risk caused by OMP discharge. We investigated the removal efficiency of 22 typical OMPs from sewage being treated in an AnMBR, and implemented and evaluated an upgrading strategy by adding biochar. The average removal efficiency of OMPs was only 76.8% due to hydrophilic OMPs containing electron-withdrawing groups (ketoprofen, ibuprofen, diclofenac, and carbamazepine) being poorly removed. Biochar addition (5.0 g/L) promoted the removal of recalcitrant OMPs by 45%, leading to an enhanced removal efficiency of 88.7%. Although biochar has a high adsorption capacity to different OMPs, the biotransformation rather than sorption removal efficiency of 13 of the 22 OMPs was largely enhanced, suggesting that adsorption-biotransformation was the main approach by which biochar enhances the OMP removal. Biotransformation test and microbial analysis revealed that the enrichment of species (Flavobacterium, Massilia, Acinetobacter, and Cloacibacterium) involved in OMP biotransformation on biochar contributed largely to the enhanced biotransformation removal efficiency of OMPs. In this way, the enhanced electron transfer activity and syntrophic metabolism between hydrogenotrophic methanogens and species that oxidize acetate to H2/CO2 on biochar jointly contributed to the stable CH4 production and OMP biotransformation. This study provides a promising strategy to enhance the OMP removal in AnMBRs and improves our understanding of the underlying mechanism of biochar-amended OMP removal in anaerobic treatment systems.
Collapse
Affiliation(s)
- Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Shixin Zhang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xiaochang C Wang
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
12
|
A Novel Anaerobic Gravity-Driven Dynamic Membrane Bioreactor (AnGDMBR): Performance and Fouling Characterization. MEMBRANES 2022; 12:membranes12070683. [PMID: 35877886 PMCID: PMC9351681 DOI: 10.3390/membranes12070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
Despite numerous studies undertaken to define the development and significance of the dynamic membrane (DM) formed on some coarse materials, the optimization of reactor configuration and the control of the membrane fouling of anaerobic dynamic membrane bioreactor (AnDMBR) need to be further investigated. The aim of this study was to design a novel anaerobic gravity-driven dynamic membrane bioreactor (AnGDMBR) for the effective and low-cost treatment of municipal wastewater. An 800 mesh nylon net was determined as the optimal support material based on its less irreversible fouling and higher effluent quality by the dead-end filtration experiments. During the continuous operation period of 44 days, the reactor performance, DM filtration behavior and microbial characteristics were studied and compared with the results of recent studies. AnGDMBR had a higher removal rate of chemical oxygen demand (COD) of 85.45 ± 7.06%. Photometric analysis integrating with three-dimensional excitation–emission matrix fluorescence spectra showed that the DM effectively intercepted organics (46.34 ± 16.50%, 75.24 ± 17.35%, and 66.39 ± 17.66% for COD, polysaccharides, and proteins). The addition of suspended carriers effectively removed the DM layer by mechanical scouring, and the growth rate of transmembrane pressure (TMP) and the decreasing rate of flux were reduced from 18.7 to 4.7 Pa/h and 0.07 to 0.01 L/(m2·h2), respectively. However, a dense and thin morphological structure of the DM layer was still observed in the end of reactor operation and plenty of filamentous microorganisms (i.e., SJA-15 and Anaerolineaceae) and the acidogens (i.e., Aeromonadaceae) predominated in the DM layer, which was also embedded in the membrane pore and led to severe irreversible fouling. In summary, the novel AnGDMBR has a superior performance (higher organic removal and lower fouling rates), which provides useful information on the configuration and operation of AnDMBRs for municipal wastewater treatment.
Collapse
|