1
|
Singh AK, Abellanas-Perez P, de Andrades D, Cornet I, Fernandez-Lafuente R, Bilal M. Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136803. [PMID: 39672062 DOI: 10.1016/j.jhazmat.2024.136803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact on biological systems even at extremely low concentrations. For instance, enormous threats to human and aquatic species have resulted from the widespread use of antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-resistant bacterial species and associated genes. Additionally, it is challenging to eliminate these PhACs by employing conventional physicochemical water treatment techniques. Enzymatic approaches, including laccase, have been identified as a promising alternative to eliminate a broad array of PhACs from water matrices. However, their application in environmental bioremediation is hindered by several factors, including the enzyme's stability and its location in the aqueous environment. Such obstacles may be surmounted by employing laccase immobilization, which enables enhanced stability (including inactivation caused by the substrate), and thus improved catalysis. This review emphasizes the potential hazards of PhACs to aquatic organisms within the detection concentration range of ngL-1 to µgL-1, as well as the deployment of laccase-based multifunctional biocatalytic systems for the environmentally friendly mitigation of anticancer drugs, analgesics/NSAIDs, antibiotics, antiepileptic agents, and beta blockers as micropollutants. This approach could reduce the underlying toxicological consequences. In addition, current developments, potential applications, and viewpoints have focused on computer-assisted investigations of laccase-PhACs binding at enzyme cavities and degradability prediction.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pedro Abellanas-Perez
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain
| | - Diandra de Andrades
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão, Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Iris Cornet
- BioWAVE research group, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | | | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., Gdansk 80-233, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
2
|
Afridi MB, Sardar H, Serdaroğlu G, Shah SWA, Alsharif KF, Khan H. SwissADME studies and Density Functional Theory (DFT) approaches of methyl substituted curcumin derivatives. Comput Biol Chem 2024; 112:108153. [PMID: 39067349 DOI: 10.1016/j.compbiolchem.2024.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Research suggests curcumin's safety and efficacy, prompting interest in its use for treating and preventing various human diseases. The current study aimed to predict drag ability of methyl substituted curcumin derivatives (BL1 to BL4) using SwissADME and Density Functional Theory (DFT) approaches. The curcumin derivatives investigated mostly adhere to Lipinski's rule of five, with molecular properties including MW, F. Csp3, nHBA, nHBD, and TPSA falling within acceptable limits. The compounds demonstrating high lipophilicity while poor water solubility. The pharmacokinetic evaluation revealed favorable gastrointestinal absorption and blood-brain barrier permeation while none were identified as substrates for P-glycoprotein, however, revealed inhibitory actions against various cytochrome P450 enzymes. Additionally, all derivatives exhibited a consistent bioavailability score of 0.55. Similarly, the DFT computations of the compounds of the curcumin derivatives were conducted at B3LYP/6-311 G** level to predict and then assess the key electronic characteristics underlying the bioactivity. Accordingly, the BL4 molecule (ΔEgap= 4.105 eV) would prefer to interact with the external molecular system more than the other molecules due to having the biggest energy gap. The ΔNmax (2.328 eV) and Δεback-donat. (-0.446 eV) scores implied that BL1 would have more charge transfer capability and the lowest stability via back donation among the compounds. In short, the derivative (BL1 to BL4) exhibited strong extrinsic therapeutic properties and therefore stand eligible for further in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Haseeba Sardar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | | | | | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
3
|
Huang Z, Gu Z, Abuduwupuer X, Qin D, Liu Y, Guo Z, Gao R. Engineering non-conservative substrate recognition sites of extradiol dioxygenase: Computation guided design to diversify and accelerate degradation of aromatic compounds. Int J Biol Macromol 2024; 264:130739. [PMID: 38460639 DOI: 10.1016/j.ijbiomac.2024.130739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Extradiol dioxygenases (EDOs) catalyzing meta-cleavage of catecholic compounds promise an effective way to detoxify aromatic pollutants. This work reported a novel scenario to engineer our recently identified Type I EDO from Tcu3516 for a broader substrate scope and enhanced activity, which was based on 2,3-dihydroxybiphenyl (2,3-DHB)-liganded molecular docking of Tcu3516 and multiple sequence alignment with other 22 Type I EDOs. 11 non-conservative residues of Tcu3516 within 6 Å distance to the 2,3-DHB ligand center were selected as potential hotspots and subjected to semi-rational design using 6 catecholic analogues as substrates; the mutants V186L and V212N returned with progressive evolution in substrate scope and catalytic activity. Both mutants were combined with D285A for construction of double mutants and final triple mutant V186L/V212N/D285A. Except for 2,3-DHB (the mutant V186L/D285A gave the best catalytic performance), the triple mutant prevailed all other 5 catecholic compounds for their degradation; affording the catalytic efficiency kcat/Km value increase by 10-30 folds, protein Tm (structural rigidity) increase by 15 °C and the half-life time enhancement by 10 times compared to the wild type Tcu3516. The molecular dynamic simulation suggested that a stabler core and a more flexible entrance are likely accounting for enhanced catalytic activity and stability of enzymes.
Collapse
Affiliation(s)
- Zihao Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhenyu Gu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiemuxinuer Abuduwupuer
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Deyuan Qin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuchen Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark.
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Chen C, Huang Z, Zou X, Li S, Zhang D, Wang SL. Prediction of molecular-specific mutagenic alerts and related mechanisms of chemicals by a convolutional neural network (CNN) model based on SMILES split. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170435. [PMID: 38286298 DOI: 10.1016/j.scitotenv.2024.170435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Structural alerts (SAs) are essential to identify chemicals for toxicity evaluation and health risk assessment. We constructed a novel SMILES split-based deep learning model (SSDL) that was trained and verified with 5850 chemicals from the ISSSTY database and 384 external test chemicals from published papers. The training accuracy was above 0.90 and the evaluation metrics (precision, recall and F1-score) all reached 0.78 or above on both internal and external test chemicals. In this model, the molecular-specific fragment importance of chemicals was first quantified independently. Then, the SA identification method based on the importance of these fragments was statistically analyzed and verified with the ISSSTY test and external test chemicals containing one of 28 typical SAs, and most of the performances were better than that of expert rules. Furthermore, a mutagenicity mechanism prediction method was developed using 237 chemicals with four known mutagenic mechanisms based on molecular similarity calibrated by the SSDL method and fragment importance, which significantly improved accuracy in three mechanisms and had comparable accuracy in the other one compared to traditional methods. Overall, the SSDL model quantifying fragment toxicity within molecules would be a novel potentially powerful tool in the determination and visualization of molecular-specific SAs and the prediction of mutagenicity mechanisms for environmental or industrial compounds and drugs.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhengliang Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; School of Public Health, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xuyan Zou
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Sheng Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Di Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shou-Lin Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
5
|
Reverbel S, Dévier MH, Dupraz V, Geneste E, Budzinski H. Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants. TOXICS 2023; 11:713. [PMID: 37624218 PMCID: PMC10457822 DOI: 10.3390/toxics11080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Aquatic environments are the final receptors of human emissions and are therefore contaminated by molecules, such as pharmaceuticals. After use, these compounds and their metabolites are discharged to wastewater treatment plants (WWTPs). During wastewater treatment, compounds may be eliminated or degraded into transformation products (TPs) or may be persistent. The aim of this study was to develop an analytical method based on high resolution mass spectrometry (HRMS) for the identification of six psychotropic drugs that are widely consumed in France and present in WWTPs, as well as their potential associated metabolites and TPs. Four out of six psychotropic drugs and between twenty-five and thirty-seven potential TPs were detected in wastewater, although this was based on full scan data. TPs not reported in the literature and specific to the study sites and therefore to the wastewater treatment processes were tentatively identified. For the selected drugs, most known and present TPs were identified, such as desmethylvenlafaxine or norcitalopram. Moreover, the short fragmentation study led rather to the identification of several TPs of carbamazepine as ubiquitous persistent TPs.
Collapse
Affiliation(s)
- Solenne Reverbel
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Marie-Hélène Dévier
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Valentin Dupraz
- Régie de l’Eau Bordeaux Métropole, Direction de la Recherche, de l’Innovation et de la Transition Ecologique, F-33081 Bordeaux, France
| | - Emmanuel Geneste
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Hélène Budzinski
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| |
Collapse
|
6
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fernández-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology. Int J Biol Macromol 2023; 242:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational framework, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670, Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland.
| |
Collapse
|
7
|
Singh AK, Bilal M, Jesionowski T, Iqbal HM. Deployment of oxidoreductases for sustainable biocatalytic degradation of selected endocrine-disrupting chemicals. SUSTAINABLE CHEMISTRY AND PHARMACY 2023; 31:100934. [DOI: 10.1016/j.scp.2022.100934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
8
|
Singh AK, Bilal M, Jesionowski T, Iqbal HMN. Assessing chemical hazard and unraveling binding affinity of priority pollutants to lignin modifying enzymes for environmental remediation. CHEMOSPHERE 2023; 313:137546. [PMID: 36529171 DOI: 10.1016/j.chemosphere.2022.137546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Lignin-modifying enzymes (LMEs) are impactful biocatalysts in environmental remediation applications. However, LMEs-assisted experimental degradation neglects the molecular basis of pollutant degradation. Furthermore, throughout the remediation process, the inherent hazards of environmental pollutants remain untapped for in-depth toxicological endpoints. In this investigation, a predictive toxicological framework and a computational framework adopting LMEs were employed to assess the hazards of Priority Pollutants (PP) and its possible LMEs-assisted catalytic screening. The potential hazardous outcomes of PP were assessed using Quantitative structure-activity relationship (QSARs)-based techniques including Toxtree, ECOSAR, and T.E.S.T. tools. Toxicological findings revealed positive outcomes in a multitude of endpoints for all PP. The PP compound 2,3,7,8-TCDD (dioxin) was found to exhibit the lowest concentration of aquatic toxicity implementing aquatic model systems; LC50 as 0.01, 0.01, 0.04 (mg L-1) for Fish (96 H), Daphnid (48 H), Green algae (96 H) respectively. T.E.S.T. results revealed that chloroform, and 2-chlorophenol both seem to be developmental toxicants. Subsequently, LMEs-assisted docking procedure was employed in predictive mitigation of PP. The docking approach as predicted degradation revealed the far lowest docking energy score for Versatile peroxidase (VP)- 2,3,7,8-TCDD docked complex with a binding energy of -9.2 (kcal mol-1), involved PHE-46, PRO-139, PRO-141, ILE-148, LEU-165, HIS-169, LEU-228, MET-262, and MET-265 as key interacting amino acid residues. Second most ranked but lesser than VP, Lignin peroxidase (LiP)- 2,3,7,8-TCDD docked complex exhibited a rather lower binding affinity score (-8.8 kcal mol-1). Predictive degradation screening employing comparative docking revealed varying binding affinities, portraying that each LMEs member has independent feasibility to bind PP as substrate. Predictive findings endorsed the hazardous nature of associated PP in a multitude of endpoints, which could be attenuated by undertaking LMEs as a predictive approach to protect the environment and implement it in regulatory considerations.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
9
|
Synthesis, Characterization, and Pharmacokinetic Studies of Thiazolidine-2,4-Dione Derivatives. J CHEM-NY 2023. [DOI: 10.1155/2023/9462176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Various derivatives of thiazolidine-2,4-dione (C1–C5) were designed and synthesized by chemical reaction with 4-nitrobenzaldehyde using Knoevenagel reaction conditions which results in the reduction of nitro group to amine and further modification results in target compounds. The chemical structures of all the 2,4-thiazolidinedione derivatives have been elucidated by 1H and 13C NMR spectroscopy. These compounds were further characterized by in silico ADME (absorption, distribution, metabolism, and excretion) studies. The pharmacokinetic properties were assessed by SwissADME software. The in silico ADME (absorption, distribution, metabolism, and excretion) assessment reveals that all derivatives (C1 to C5) have 5 to 7 rotatable bonds. Lipophilicity and water solubility showed that C1, C2, and C4 are water soluble except for C3 and C5 which are moderately soluble. All the compounds have high GI absorption except C3. None of the derivatives are blood-brain barrier permeant. Drug metabolism of TZDs derivatives showed that C3 was identified as an inhibitor of CYP2C9 and C5 as an inhibitor of CYP1A2 and CYP2C19. Drug likeness properties indicate that C1 has only one violation of the Ghose rule while C3 has violations in the Ghose and Egan rules. The in silico pharmacokinetic studies revealed high GI absorption and the inability to pass blood-brain barrier which can be further assessed by in vitro and in vivo antihyperglycemic activity. This study will contribute to providing TZDs derivatives with an improved pharmacokinetic profile and decreased toxicity.
Collapse
|
10
|
Šehović E, Memić M, Sulejmanović J, Hameed M, Begić S, Ljubijankić N, Selović A, Ghfar AA, Sher F. Thermodynamic valorisation of lignocellulosic biomass green sorbents for toxic pollutants removal. CHEMOSPHERE 2022; 307:135737. [PMID: 35850218 DOI: 10.1016/j.chemosphere.2022.135737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Various toxic heavy metals have become hazardous to human health as well as the environment. This research has been focused on a biosorption/bioremoval process of chromium (III), copper (II) and lead (II) ions from an aqueous solution by utilizing lignocellulosic biomass of Citrus limon peel (CLP) powder. CLP powder biomass was selected based on dietary fibre components having greater potential to remove target heavy metal ions in order to purify wastewater by following the eco-friendly biosorption method. At optimum conditions, the observed maximum removal efficiency of 97.47, 87.13 and 95.71% for Cr, Cu and Pb ions, respectively, was observed. An investigation has been made as a work of pH, CLP amount and temperature. The presented bio-removal processes by prepared CLP biosorbent manifested as a temperature-independent. Langmuir isotherm model was found an excellent fit of the isotherm data for tested systems with the calculated biosorption capacities of 111.11 (Cr), 76.92 (Cu) and 100 (Pb) mg/g. The positive ΔH values for selected target heavy metal ions, except lead ions, confirmed that the reaction was spontaneous and endothermic. A cooperative mechanism of second-order and intraparticle diffusion models during the adsorption processes of all three target ions was established with a higher coefficient of determination and more closely anticipated take-up (adsorption capacity). Furthermore, the interaction of -OH and -COOH functional groups of CLP that have a major role in the removal of Cr, Cu and Pb ions from single-ion aqueous solution and/or a surface biosorption was confirmed based on the results presented by SEM-EDS and FTIR analysis. Analysis from XRD revealed peak corresponding to amorphous cellulose type I as observed by FT-IR analysis.
Collapse
Affiliation(s)
- Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Mustafa Memić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom.
| | - Mariam Hameed
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
| | - Sabina Begić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Nevzeta Ljubijankić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Alisa Selović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|