1
|
Heydarian A, Vakilchap F, Mousavi SN, Mousavi SM. Bacterial acidic agents-assisted multi-elemental (Ni, Co, and Li) leaching of used lithium-ion batteries at high pulp densities. Sci Rep 2025; 15:16517. [PMID: 40360650 PMCID: PMC12075580 DOI: 10.1038/s41598-025-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Accumulating used lithium-ion battery cathodes and associated environmental concerns necessitate efficient recycling strategies. Biohydrometallurgical processes often face challenges at high pulp densities due to microbial inhibition and substrate limitations, particularly sulfur availability, which is crucial for bacterial acidic agent production. This study introduces a breakthrough spent-medium bioleaching approach optimized for high-pulp-density conditions. We systematically addressed key challenges, including bacterial inhibition, sulfuric acid optimization, and its impact on critical metal dissolution. Using response surface methodology, we optimized sulfur dosage, inoculum size, and initial pH to enhance bacterial acidic agent production by Acidithiobacillus thiooxidans, achieving a sulfate concentration of 40.3 g/l and a ΔpH of 1.87. Metal removal efficiency was assessed at pulp densities of 10-50 g/l, demonstrating high extraction rates of Li (92%), Ni (88%), and Co (78%) at 50 g/l after 7 days. Comparative analysis with chemical leaching confirmed the effectiveness of this green strategy. Furthermore, a kinetic study using the Avrami equation and shrinking core model revealed that both models yield comparable results, and diffusion through the product layer controlled the leaching rate. This study presents a comprehensive and sustainable strategy for waste recycling at high pulp densities by integrating process optimization, spent-medium bioleaching, and kinetic modeling for critical metal extraction from lithium-ion battery cathodes.
Collapse
Affiliation(s)
- Ahmad Heydarian
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Jalal Ale Ahmad Highway, Nasr, P.O. Box 14115-111, Tehran, Iran
| | - Farzane Vakilchap
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Jalal Ale Ahmad Highway, Nasr, P.O. Box 14115-111, Tehran, Iran
| | - Seyedeh Neda Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Jalal Ale Ahmad Highway, Nasr, P.O. Box 14115-111, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Jalal Ale Ahmad Highway, Nasr, P.O. Box 14115-111, Tehran, Iran.
- Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Tian B, Li J, Zhao J, Shang H, Gao W, Liu X, Wen J. Humic acid-mediated mechanism for efficient biodissolution of used lithium batteries. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135400. [PMID: 39096634 DOI: 10.1016/j.jhazmat.2024.135400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Resource recovery of valuable metals from spent lithium batteries is an inevitable trend for sustainable development. In this study, external regulation was used to enhance the tolerance and stability of strains in the leaching of spent lithium batteries to radically improve the bioleaching efficiency. The leaching of Li, Ni, Co and Mn increased to 100 %, 85.06 %, 74.25 % and 69.44 % respectively after targeted cultivation with HA as compared to the undomesticated strain. In the process of microbial leaching of spent lithium batteries, the metabolites in the Ⅰ, Ⅳ, and Ⅴ regions of the metabolism of the undomesticated bacterial colony had a positive correlation to the dissolution of spent lithium batteries. The metabolites of Ⅰ, Ⅱ, and Ⅴ regions were directly affected by the HA domesticated flora on the dissolution of spent lithium batteries. The excess metabolism of protein substances can significantly promote the reduction of Ni, Co, Mn leaching, and at the same time in the role of a large number of humic substances complexed the toxic metal ions in the system, to ensure the activity of the bacterial colony. It can be seen that the bacteria were domesticated by humic acid, which promoted the bacteria's own metabolism, and the super-metabolised EPS promoted the solubilisation of spent lithium batteries.
Collapse
Affiliation(s)
- Bingyang Tian
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Jingze Li
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Juan Zhao
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - He Shang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Wencheng Gao
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Xue Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Jiankang Wen
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China.
| |
Collapse
|
3
|
Liu Z, Liao X, Zhang Y, Li S, Ye M, Gan Q, Fang X, Mo Z, Huang Y, Liang Z, Dai W, Sun S. A highly efficient process to enhance the bioleaching of spent lithium-ion batteries by bifunctional pyrite combined with elemental sulfur. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119954. [PMID: 38169252 DOI: 10.1016/j.jenvman.2023.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Bioleaching technologies have been shown to be an environmentally friendly and economically beneficial tool for extracting metals from spent lithium-ion batteries (LIBs). However, conventional bioleaching methods have exhibited low efficiency in recovering metals from spent LIBs. Therefore, relied on the sustainability principle of using waste to treat waste, this study employed pyrite (FeS2) as an energy substance with reducing properties and investigated its effects in combination with elemental sulfur (S0) or FeSO4 on metals bioleaching from spent LIBs. Results demonstrated that the bioleaching efficiency was significantly higher in the leaching system constructed with FeS2 + S0, than in the FeS2 + FeSO4 or FeS2 system. When the pulp densities of FeS2, S0 and spent LIBs were 10 g L-1, 5 g L-1 and 10 g L-1, respectively, the leaching efficiency of Li, Ni, Co and Mn all reached 100%. Mechanistic analysis reveals that in the FeS2 + S0 system, the activity and acid-producing capabilities of iron-sulfur oxidizing bacteria were enhanced, promoting the generation of Fe (Ⅱ) and reducible sulfur compounds. Simultaneously, bio-acids were shown to disrupt the structure of the LIBs, thereby increasing the contact area between Fe (Ⅱ) and sulfur compounds containing high-valence metals. This effectively promoted the reduction of high-valence metals, thereby enhancing their leaching efficiency. Overall, the FeS2 + S0 bioleaching process constructed in this study, improved the leaching efficiency of LIBs while also effectively utilizing waste, providing technical support for the comprehensive and sustainable management of solid waste.
Collapse
Affiliation(s)
- Zihang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuman Zhang
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qiaowei Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenyun Liang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
4
|
Li J, Zhang H, Wang H, Zhang B. Research progress on bioleaching recovery technology of spent lithium-ion batteries. ENVIRONMENTAL RESEARCH 2023; 238:117145. [PMID: 37716384 DOI: 10.1016/j.envres.2023.117145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Bioleaching of lithium-ion batteries is a microbially catalyzed process. Under the action of redox, acid leaching and complexation in the presence of microorganisms, the valuable metals in the cathode material enter the liquid phase as ions and are subsequently recovered from the succeeding process. This technique has the advantages of being inexpensive, environmentally friendly and having simple needs. However, it is still in development and has not yet commercialized. In this paper, the technology is fully discussed based on numerous excellent studies. The contents include commonly utilized microorganisms, bioleaching mechanism, microbial stress response and metabolic activation, enhancement strategies, leaching characteristics and interfacial phenomena, process evaluation, and a critical discussion of recent research breakthroughs. They give readers with comprehensive and in-depth understanding on the bioleaching of lithium-ion batteries and help to improve the technology's industrialization. Researchers can make new explorations from the potential research directions and methods presented in this work to make biotechnology better serve resource recovery and social development.
Collapse
Affiliation(s)
- Jiafeng Li
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Haijun Zhang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Haifeng Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Baojing Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
5
|
Liao X, Ye M, Liang J, Jian J, Li S, Gan Q, Liu Z, Mo Z, Huang Y, Sun S. Comprehensive insights into the gallic acid assisted bioleaching process for spent LIBs: Relationships among bacterial functional genes, Co(III) reduction and metal dissolution behavior. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130773. [PMID: 36641848 DOI: 10.1016/j.jhazmat.2023.130773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Despite the growing demand for resource recovery from spent lithium-ion batteries (LIBs) by bioleaching, low Co leaching efficiency has hindered the development and application of this technology. Therefore, a novel process was designed, combining gallic acid (GA) and mixed culture bioleaching (MCB), to enhance the removal of metals from spent LIBs. Results indicated that the GA + MCB process achieved 98.03% Co and 98.02% Li leaching from spent LIBs, simultaneously reducing the biotoxicity, phytotoxicity and leaching toxicity of spent LIBs under optimal conditions. The results of mechanism analysis demonstrated that functional microorganisms adapted to the leaching system through various strategies, including oxidative stress reduction, DNA damage repair, heavy metal resistance and biofilm formation, maintaining normal physiological activities and the continuous production of biological acid. The biological acid erodes the surface of waste LIBs, causing some Co and a large amount of Li to be released, while also increasing the contact area between GA and Co(III). Therefore, GA is beneficial for reducing insoluble Co(III), forming soluble Co(II). Finally, biological acid can effectively promote Co(II) leaching. Collectively, the results of this study provide valuable insight into the simultaneous enhancement of metal extraction and the mitigation of environmental pollution from spent LIBs.
Collapse
Affiliation(s)
- Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jialin Liang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianxiong Jian
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiaowei Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zihang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
6
|
Zhang X, Shi H, Tan N, Zhu M, Tan W, Daramola D, Gu T. Advances in bioleaching of waste lithium batteries under metal ion stress. BIORESOUR BIOPROCESS 2023; 10:19. [PMID: 38647921 PMCID: PMC10992134 DOI: 10.1186/s40643-023-00636-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Damilola Daramola
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA.
| |
Collapse
|