1
|
Chen S, Sheng X, Zhao Z, Cui F. Chemical-free vacuum ultraviolet irradiation as ultrafiltration membrane pretreatment technique: Performance, mechanisms and DBPs formation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119785. [PMID: 38081086 DOI: 10.1016/j.jenvman.2023.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Membrane fouling induced by natural organic matter (NOM) has seriously affected the further extensive application of ultrafiltration (UF). Herein, a simple, green and robust vacuum ultraviolet (VUV) technology was adopted as pretreatment before UF and ultraviolet (UV) technology was used for comparison. The results showed that control effect of VUV pretreatment on membrane fouling was better than that of UV pretreatment, as evidenced by the increase of normalized flux from 0.27 to 0.38 and 0.73 after 30 min UV or VUV pretreatment, respectively. This is related to the fact that VUV pretreatment exhibited stronger NOM degradation ability than UV pretreatment owing to the formation of HO•. The steady-state concentration of HO• was calculated as 3.04 × 10-13 M and the cumulative exposure of HO• reached 5.52 × 10-10 M s after 30 min of VUV irradiation. And the second-order rate constant between NOM and HO• was determined as 1.36 × 104 L mg-1 s-1. Furthermore, fluorescence EEM could be applied to predict membrane fouling induced by humic-enriched water. Standard blocking and cake filtration were major fouling mechanisms. Moreover, extension of UV pretreatment time increased the disinfection by-products (DBPs) formation, the DBPs concentration was enhanced from 322.36 to 1187.80 μg/L after 210 min pretreatment. However, VUV pretreatment for 150 min reduced DBPs content to 282.57 μg/L, and DBPs content continued to decrease with the extension of pretreatment time, revealing that VUV pretreatment achieved effective control of DBPs. The variation trend of cytotoxicity and health risk of DBPs was similar to that of DBPs concentration. In summary, VUV pretreatment exhibited excellent effect on membrane fouling alleviation, NOM degradation and DBPs control under a certain pretreatment time.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xin Sheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
2
|
Eniola JO, Sizirici B, Fseha Y, Shaheen JF, Aboulella AM. Application of conventional and emerging low-cost adsorbents as sustainable materials for removal of contaminants from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88245-88271. [PMID: 37440129 DOI: 10.1007/s11356-023-28399-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
The impact of water pollution has led to the search for cost-effective and environmentally friendly treatment processes to alleviate the associated environmental hazards. Adsorption is identified as an advanced treatment technology that offers simplicity and cheap alternatives to water treatment technologies when low-cost adsorbents such as industrial by-products, waste, and agricultural waste are utilized. The utilization of these materials as low-cost adsorbents for the treatment of drinking water will bring them some value. Several practices have been done to improve the removal efficiencies of the low-cost adsorbents in order to achieve WHO standards of drinking water quality. The paper highlights some of the synthesis routes employed for the modification of low-cost adsorbents. This updated review provides information on the different applications of low-cost adsorbents in removing pollutants and their adsorption capacities in an attempt to deploy the recent sustainable low-cost adsorbents with high removal efficiencies for water treatment. Future research should focus on the fabrication of hybrid low-cost adsorbents with multifunctional and antimicrobial properties. In addition, life cycle assessment (LCA) should be conducted to reveal the environmental burdens associated with the modification of the low-cost adsorbent to improve their removal efficiencies.
Collapse
Affiliation(s)
- Jamiu O Eniola
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Banu Sizirici
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yohanna Fseha
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jamal F Shaheen
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahmed Mamdouh Aboulella
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Boussouga YA, Sacher F, Schäfer AI. Water quality of The Gambia River: A prospective drinking water supply. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162794. [PMID: 36914135 DOI: 10.1016/j.scitotenv.2023.162794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/13/2023]
Abstract
Drinking water in The Gambia is mostly derived from boreholes that could potentially be contaminated. The Gambia River, a major river in West Africa that covers 12 % of the country's area, could be more exploited for drinking water supply. During the dry season, the total dissolved solids (TDS), ranging from 0.02 to 33 g/L in The Gambia River, decreases with the distance to the river mouth with no major inorganic contamination. The freshwater (<0.8 g/L TDS) starts from Jasobo at approximately 120 km from the river mouth and extends by about 350 km to the eastern border of The Gambia. With a dissolved organic carbon (DOC) ranging from 2 to 15 mgC/L, the natural organic matter (NOM) of The Gambia River was characterised by 40-60 % humic substances of paedogenic origin. With such characteristics, unknown disinfection by-products could be formed if chemical disinfection, such as chlorination, was implemented during treatment. Out of 103 types of micropollutants, 21 were detected (4 pesticides, 10 pharmaceuticals, 7 per- and polyfluoroalkyl substances (PFAS)) with concentrations ranging from 0.1 to 1500 ng/L. Pesticides, bisphenol A and PFAS concentrations were below the stricter EU guidelines set for drinking water. These were mainly confined to the urban area of high population density near the river mouth, while the quality of the freshwater region of low population density was surprisingly pristine. These results indicate that The Gambia River, especially in its upper regions, would be well suited as a drinking water supply when using decentralised ultrafiltration treatment for the removal of turbidity, as well as, depending on pore size, to a certain extent microorganisms and DOC.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Frank Sacher
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, Karlsruhe 76139, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Qiu Y, Wu S, Xia L, Ren LF, Shao J, Shen J, Yang Z, Tang CY, Wu C, Van der Bruggen B, Zhao Y. Ionic resource recovery for carbon neutral papermaking wastewater reclamation by a chemical self-sufficiency zero liquid discharge system. WATER RESEARCH 2023; 229:119451. [PMID: 36493701 DOI: 10.1016/j.watres.2022.119451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Papermaking industry discharges large quantities of wastewater and waste gas, whose treatment is limited by extra chemicals requirements, insufficient resource recovery and high energy consumption. Herein, a chemical self-sufficiency zero liquid discharge (ZLD) system, which integrates nanofiltration, bipolar membrane electrodialysis and membrane contactor (NF-BMED-MC), is designed for the resource recovery from wastewater and waste gas. The key features of this system include: 1) recovery of NaCl from pretreated papermaking wastewater by NF, 2) HCl/NaOH generation and fresh water recovery by BMED, and 3) CO2 capture and NaOH/Na2CO3 generation by MC. This integrated system shows great synergy. By precipitating hardness ions in papermaking wastewater and NF concentrate with NaOH/Na2CO3, the inorganic scaling on NF membrane is mitigated. Moreover, the NF-BMED-MC system with high stability can simultaneously achieve efficient CO2 removal and sustainable recovery of fresh water and high-purity resources (NaCl, Na2SO4, NaOH and HCl) from wastewater and waste gas without introducing any extra chemicals. The environmental evaluation indicates the carbon-neutral papermaking wastewater reclamation can be achieved through the application of NF-BMED-MC system. This study establishes the promising of NF-BMED-MC as a sustainable alternative to current membrane methods for ZLD of papermaking industry discharges treatment.
Collapse
Affiliation(s)
- Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China
| | - Sifan Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, PR China
| | - Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|