1
|
Zhang Y, Liu Y, Wei Y, Jiang Y, Gao Y, Liu C, Zhao G, Liu R, Wang H, Li X, Liu H, Yu Z, Shi G, Wang G. Preparation of Multistage Pore TS-1 with Enhanced Photocatalytic Activity, Including Process Studies and Artificial Neural Network Modeling for Synergy Assessment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19441-19457. [PMID: 39238335 DOI: 10.1021/acs.langmuir.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Antibiotic residues have been found in several aquatic ecosystems as a result of the widespread use of antibiotics in recent years, which poses a major risk to both human health and the environment. At present, photocatalytic degradation is the most effective and environmentally friendly method. Titanium silicon molecular sieve (TS-1) has been widely used as an industrial catalyst, but its photocatalytic application in wastewater treatment is limited due to its small pores and few active sites. In this paper, we report a method for preparing multistage porous TS-1 with a high specific surface area by alkali treatment. In the photocatalytic removal of CIP (ciprofloxacin) antibiotic wastewater experiments, the alkali-treated catalyst showed better performance in terms of interfacial charge transfer efficiency, which was 2.3 times higher than that of TS-1 synthesized by the conventional method, and it was found to maintain better catalytic performance in the actual water source. In addition, this research studied the effects of solution pH, contaminant concentration, and catalyst dosage on CIP degradation, while liquid chromatography-mass spectrometry (LC-MS) was used to identify intermediates in the degradation process and infer possible degradation pathways and the toxicity of CIP, and its degradation product was also analyzed using ECOSAR 2.2 software, and most of the intermediates were found to be nontoxic and nonharmful. Finally, a 3:5:1 artificial neural network model was established based on the experiments, and the relative importance of the influence of experimental conditions on the degradation rate was determined. The above results confirmed the feasibility and applicability of photocatalytic treatment of wastewater containing antibiotics using visible light excitation alkali post-treatment TS-1, which provided technical support and a theoretical basis for the photocatalytic treatment of wastewater containing antibiotics.
Collapse
Affiliation(s)
- Yulan Zhang
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yubing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuan Wei
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanyan Jiang
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuhui Gao
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Chao Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guanghong Zhao
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ronghui Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongyu Wang
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Li
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Huaide Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ziyan Yu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Gaofeng Shi
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guoying Wang
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Hexi University, Zhangye 734000, Gansu, China
| |
Collapse
|
2
|
Kamranifar M, Ghanbari S, Fatehizadeh A, Taheri E, Azizollahi N, Momeni Z, Khiadani M, Ebrahimpour K, Ganachari SV, Aminabhavi TM. Unique effect of bromide ion on intensification of advanced oxidation processes for pollutants removal: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124136. [PMID: 38734054 DOI: 10.1016/j.envpol.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes (AOPs) have been developed to decompose toxic pollutants to protect the aquatic environment. AOP has been considered an alternative treatment method for wastewater treatment. Bromine is present in natural waters posing toxic effects on human health and hence, its removal from drinking water sources is necessary. Of the many techniques advanced oxidation is covered in this review. This review systematically examines literature published from 1997 to April 2024, sourced from Scopus, PubMed, Science Direct, and Web of Science databases, focusing on the efficacy of AOPs for pollutant removal from aqueous solutions containing bromide ions to investigate the impact of bromide ions on AOPs. Data and information extracted from each article eligible for inclusion in the review include the type of AOP, type of pollutants, and removal efficiency of AOP under the presence and absence of bromide ion. Of the 1784 documents screened, 90 studies met inclusion criteria, providing insights into various AOPs, including UV/chlorine, UV/PS, UV/H2O2, UV/catalyst, and visible light/catalyst processes. The observed impact of bromide ion presence on the efficacy of AOP processes, alongside the AOP method under scrutiny, is contingent upon various factors such as the nature of the target pollutant, catalyst type, and bromide ion concentration. These considerations are crucial in selecting the best method for removing specific pollutants under defined conditions. Challenges were encountered during result analysis included variations in experimental setups, disparities in pollutant types and concentrations, and inconsistencies in reporting AOP performance metrics. Addressing these parameters in research reports will enhance the coherence and utility of subsequent systematic reviews.
Collapse
Affiliation(s)
- Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Momeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharanabasava V Ganachari
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India; University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140 413, India; Korea University, Seoul, South Korea
| |
Collapse
|
3
|
Ahmad N, Kuo CFJ, Mustaqeem M, Sangili A, Huang CC, Chang HT. Synthesis of novel Type-II MnNb 2O 6/g-C 3N 4 Mott-Schottky heterojunction photocatalyst: Excellent photocatalytic performance and degradation mechanism of fluoroquinolone-based antibiotics. CHEMOSPHERE 2023; 321:138027. [PMID: 36736476 DOI: 10.1016/j.chemosphere.2023.138027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fluoroquinolone antibiotics have been encountered in aquatic environments in quantities giving rise to significant concern recently. To cope with this problem, it is necessary to design a semiconductor photocatalyst having excellent photocatalytic efficiency to eliminate the antibiotics. The heterojunction is a likely situate where the efficiency of relevant photocatalyst can be strengthened. In this study, the performance of MnNb2O6/g-C3N4 (MNO/g-CN) composites in the photocatalytic degradation of ciprofloxacin (CIP) and tetracycline-HCl (TCH) antibiotics was explored. Enhanced photocatalytic activity of MNO/g-CN was found to be owing to electron's shifting between the MNO, and g-CN sheets, which promotes the formation of photo-generated e⁻/h⁺ pairs. This shows a low-waste, high-performance material exists to eradicate CIP and TCH from wastewater. Further, the structural, photochemical and light interacted properties of the MNO/g-CN photocatalyst, prepared by solvothermal method and sonication, were described using photochemical, physiochemical and electrochemical approaches. The synthesized photocatalyst owes its particular efficiency to its methodical photo-degradation of CIP and TC using visible light. The optimum composite 15% MNO/g-CN evinced the greatest photocatalytic efficiency with CIP and TCH photo-degradation of 94.10%, and 98.50%, respectively, and degradation mechanism were investigated using LC-MS spectroscopy. The suitable photocatalytic activity is ascribed to lower the recombination's rate of e⁻/h⁺ pairs. The scavenging evaluations proved that the h+ and •O2- were two major photoactive species accomplishing the CIP and TCH photodegradation over MNO/g-CN under visible region. Our findings pave the way for the construction of efficient binary photocatalysts for antibiotic restitution.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC
| | - Chung-Feng Jeffrey Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC.
| | - Mujahid Mustaqeem
- Department of Chemistry, National Taiwan University, IOP Academia Sinica, Taipei, Taiwan, ROC
| | - Arumugam Sangili
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, ROC
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, ROC
| |
Collapse
|
4
|
Shang J, Zhang T, Li X, Luo Y, Feng D, Cheng X. Mn3O4-ZnMn2O4/SnO2 nanocomposite activated peroxymonosulfate for efficient degradation of ciprofloxacin in water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Li X, Feng D, He X, Qian D, Nasen B, Qi B, Fan S, Shang J, Cheng X. Z-scheme heterojunction composed of Fe doped g-C3N4 and MoS2 for efficient ciprofloxacin removal in a photo-assisted peroxymonosulfate system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|