1
|
Beissat K, Lattard V, Picard-Meyer E, Fafournoux A, Soro SD, Servat A, Vincent-Hubert F, Boué F, Chatron N, Monchâtre-Leroy E, Wasniewski M. Infectious potential and circulation of SARS-CoV-2 in wild rats. PLoS One 2025; 20:e0316882. [PMID: 40354427 PMCID: PMC12068656 DOI: 10.1371/journal.pone.0316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, a wide range of animal species (pets, mink…) have been naturally infected with this betacoronavirus. The emergence of new variants has increased the ability of SARS-CoV-2 to infect species that were not susceptible to the "original" SARS-CoV-2, such as mice and rats. This work attempted to evaluate the role of urban rats in the SARS-CoV-2 transmission by combining surveillance studies of rat populations in urban environments, in vivo experimental inoculation of SARS-CoV-2 and comparative viral-receptor interaction in silico analyses. We studied the circulation of SARS-CoV-2 in wild Rattus norvegicus (n = 401) captured in urban areas and sewage systems of several French cities. Except for 3 inconclusive samples (2/75 from Bordeaux and 1/261 from Lyon) none of the 353 sera tested showed anti-SARS-CoV-2 antibodies by microsphere immunoassay. However, the 3 inconclusive sera samples were negative by virus neutralisation assay. No SARS-CoV-2 viral RNA was detected in all lungs collected from the 401 captured urban brown rats. In complement, four rat groups (two wild-type colonies, Rattus norvegicus and Rattus rattus, and two laboratory strains, Sprague-Dawley and Wistar) were inoculated with the SARS-CoV-2 Omicron BA.5. At 4 days post-inoculation, no infectious viral particles were detected in the lungs and upper respiratory tract (URT) while viral RNA was detected at a low level only in the URT of all groups. In addition, seroconversion was observed 14 days after inoculation in the four groups. By molecular modelling, the Omicron BA.5 receptor binding domain (RBD) had lower affinities for Rattus norvegicus and Rattus rattus ACE2 than Homo sapiens ACE2. Based on these results the SARS-CoV-2 Omicron BA.5 was unable to infect laboratory and wild type rats. In addition, Rattus norvegicus collected for this study in different areas of France were not infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Kevyn Beissat
- Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, Nancy, France
- USC-1233 Rongeurs Sauvages Risques Sanitaires et Gestion des Populations (RS2GP), VetAgroSup, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Lyon University, Marcy-L’Etoile, France
| | - Virginie Lattard
- USC-1233 Rongeurs Sauvages Risques Sanitaires et Gestion des Populations (RS2GP), VetAgroSup, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Lyon University, Marcy-L’Etoile, France
| | | | - Ambre Fafournoux
- USC-1233 Rongeurs Sauvages Risques Sanitaires et Gestion des Populations (RS2GP), VetAgroSup, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Lyon University, Marcy-L’Etoile, France
| | - Sionfoungo Daouda Soro
- USC-1233 Rongeurs Sauvages Risques Sanitaires et Gestion des Populations (RS2GP), VetAgroSup, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Lyon University, Marcy-L’Etoile, France
| | - Alexandre Servat
- Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, Nancy, France
| | - Françoise Vincent-Hubert
- IFREMER, Laboratoire Santé, Environnement et Microbiologie (LSEM) - MASAE, rue de l’île d’Yeu, , Nantes, France/ Groupement d’intérêt scientifique (GIS) Obépine, https://www.reseau-obepine.fr
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, Nancy, France
| | - Nolan Chatron
- USC-1233 Rongeurs Sauvages Risques Sanitaires et Gestion des Populations (RS2GP), VetAgroSup, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Lyon University, Marcy-L’Etoile, France
| | | | - Marine Wasniewski
- Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, Nancy, France
| |
Collapse
|
2
|
Scriver M, Zaiko A, Pochon X, Stanton JAL, Belonovich O, Jeunen GJ, Thomas AC, Gemmell NJ, von Ammon U. Biodiversity monitoring in remote marine environments: Advancing environmental DNA/RNA sampling workflows. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107041. [PMID: 40043465 DOI: 10.1016/j.marenvres.2025.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Understanding biodiversity is crucial for protecting unique environments, but acquiring this knowledge is challenging in isolated areas due to limited availability of easy-to-implement biomonitoring tools. To determine optimal sampling strategies in remote regions, environmental DNA and RNA (eDNA and eRNA) sampling workflows were evaluated at 12 sites in three fiords within Fiordland National Park, Aotearoa-New Zealand. For filtration comparison, a modified cruising speed net was used to concentrate eDNA/eRNA onto 20 μm nylon filters, while water from the net's cod-end was filtered through a 5 μm Smith-Root self-preserving filter using the eDNA Citizen Scientist Sampler. To compare preservation methods, Smith-Root filters were cut in half, with one half preserved in the self-preserving unit and the other in DNA/RNA Shield™ buffer. Biodiversity screening was performed by sequencing the 18S rRNA gene for eukaryotes and two mitochondrial 16S rRNA genes for fish and marine vertebrates. Comparable amplicon sequence variant (ASVs) richness was observed between methods, yet samples preserved with buffer showed higher richness of fish and marine vertebrate taxa and higher PCR amplification success. There was little variation in community composition, except for 16S rRNA targeting fish, where distinct patterns emerged based on preservation methods. Overall, sampling workflows showed similar community composition and alpha diversity across both nucleic acids. These results confirm that enhancing eDNA/eRNA yields for sparse taxa requires consideration of collection and preservation methods. However, abundant taxa biodiversity is captured consistently, allowing for adjustments without compromising robustness. These insights support streamlined eDNA/eRNA sampling, emphasizing adaptive strategies based on targeted taxa.
Collapse
Affiliation(s)
- Michelle Scriver
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand; Sequench Ltd, Nelson, New Zealand.
| | - Anastasija Zaiko
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand; Sequench Ltd, Nelson, New Zealand
| | - Xavier Pochon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Gert-Jan Jeunen
- Department of Marine Science, University of Otago, Dunedin, 9016, New Zealand
| | | | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulla von Ammon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
3
|
Holzer C, Ho J, Tiehm A, Stange C. Wastewater monitoring - passive sampling for the detection of SARS-CoV-2 and antibiotic resistance genes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178244. [PMID: 39729846 DOI: 10.1016/j.scitotenv.2024.178244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples. In particular, it is difficult to sample small catchments, critical facilities (e.g. hospitals) or low-income countries where the use of automatic water samplers is not possible or the samplers are not available. To overcome these problems, this study developed a low-cost and easy-to-use passive sampler based on activated carbon as an adsorbent with a corresponding elution/extraction protocol that allows the detection of viruses and antibiotic resistance genes in wastewater. Monitoring of SARS-CoV-2 with these passive samplers at the influent of a wastewater treatment plant over a period of 1.5 months showed a positive correlation with monitoring with 24-h composite samples in the catchment area. Analysis of the nucleic acid extracts for antibiotic resistance genes showed the presence of clinically relevant carbapenemase genes such as blaKPC-3 and blaNDM-1 in the wastewater samples, with these genes being detected more reliably by the passive samplers than in the 24-h composite samples. This study therefore demonstrated that passive samplers provide reproducible SARS-CoV-2 RNA and antibiotic resistance gene signals from wastewater and a time-integrated measurement of the sampled matrix with high sensitivity.
Collapse
Affiliation(s)
- C Holzer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - J Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - C Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
4
|
Chai X, Liu S, Liu C, Bai J, Meng J, Tian H, Han X, Han G, Xu X, Li Q. Surveillance of SARS-CoV-2 in wastewater by quantitative PCR and digital PCR: a case study in Shijiazhuang city, Hebei province, China. Emerg Microbes Infect 2024; 13:2324502. [PMID: 38465692 DOI: 10.1080/22221751.2024.2324502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
In this study, we reported the first long-term monitoring of SARS-CoV-2 in wastewater in Mainland China from November 2021 to October 2023. The city of Shijiazhuang was employed for this case study. We developed a triple reverse transcription droplet digital PCR (RT-ddPCR) method using triple primer-probes for simultaneous detection of the N1 gene, E gene, and Pepper mild mottle virus (PMMoV) to achieve accurate quantification of SARS-CoV-2 RNA in wastewater. Both the RT-ddPCR method and the commercial multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) method were implemented for the detection of SARS-CoV-2 in wastewater in Shijiazhuang City over a 24-month period. Results showed that SARS-CoV-2 was detected for the first time in the wastewater of Shijiazhuang City on 10 November 2022. The peak of COVID-19 cases occurred in the middle of December 2022, when the concentration of SARS-CoV-2 in the wastewater was highest. The trend of virus concentration increases and decreases forming a "long-tailed" shape in the COVID-19 outbreak and recession cycle. The results indicated that both multiplex RT-ddPCR and RT-qPCR are effective in detecting SARS-CoV-2 in wastewater, but RT-ddPCR is capable of detecting low concentrations of SARS-CoV-2 in wastewater which is more efficient. The SARS-CoV-2 abundance in wastewater is correlated to clinical data, outlining the public health utility of this work.HighlightsFirst long-term monitoring of SARS-CoV-2 in wastewater in Mainland ChinaCOVID-19 outbreak was tracked in Shijiazhuang City from outbreak to containmentWastewater was monitored simultaneously using RT-ddPCR and RT-qPCR methodsTriple primer-probe RT-ddPCR detects N1 and E genes of SARS-CoV-2 and PMMoV.
Collapse
Affiliation(s)
- Xiaoru Chai
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shiyou Liu
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Chao Liu
- Shijiazhuang Qiaodong Sewage Treatment Plant, Shijiazhuang, People's Republic of China
| | - Jiaxuan Bai
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Juntao Meng
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hong Tian
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xu Han
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Guangyue Han
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Xiangdong Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
| | - Qi Li
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| |
Collapse
|
5
|
Karamati N E, Law I, Weese JS, McCarthy DT, Murphy HM. Passive sampling of microbes in various water sources: A systematic review. WATER RESEARCH 2024; 266:122284. [PMID: 39353231 DOI: 10.1016/j.watres.2024.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
Traditional methods for monitoring pathogens in environmental waters have numerous drawbacks. Sampling approaches that are low-cost and time efficient that can capture temporal variation in microbial contamination are needed. Passive sampling of aquatic environments has shown promise as an alternative water monitoring technique for waterborne pathogens and microbial contaminants. The present systematic review aimed to compile and synthesize existing literature on the use of passive samplers for the monitoring of microbes in different water sources and identify research gaps. The review summarizes current knowledge on materials used for detection, deployment durations, analytical methods, quantification as well as benefits and limitations of passive sampling. This review found that electronegative nitrocellulose membrane filters are effective for both detection and quantification of viruses in wastewater, while gauze passive samplers have been effective for detecting bacterial targets in wastewater. There is a large knowledge gap in the use of passive samplers in a quantitative manner, especially for the back-calculation of water-column microbial concentrations or for correlation to outcomes of interest (e.g. prevalence rates). Further, there is very limited attention paid to the use of membrane filters for the monitoring of bacteria in any water source as well as a lack of studies utilizing passive sampling approaches for protozoa.
Collapse
Affiliation(s)
- Elnaz Karamati N
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia
| | - Ilya Law
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia; School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada; Department of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia
| | - Heather M Murphy
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; Department of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
6
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
7
|
Geissler M, Mayer R, Helm B, Dumke R. Food and Environmental Virology: Use of Passive Sampling to Characterize the Presence of SARS-CoV-2 and Other Viruses in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:25-37. [PMID: 38117471 DOI: 10.1007/s12560-023-09572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Fecal shedding of SARS-CoV-2 leads to a renaissance of wastewater-based epidemiology (WBE) as additional tool to follow epidemiological trends in the catchment of treatment plants. As alternative to the most commonly used composite samples in surveillance programs, passive sampling is increasingly studied. However, the many sorbent materials in different reports hamper the comparison of results and a standardization of the approach is necessary. Here, we compared different cost-effective sorption materials (cheesecloths, gauze swabs, electronegative filters, glass wool, and tampons) in torpedo-style housings with composite samples. Despite a remarkable variability of the concentration of SARS-CoV-2-specific gene copies, analysis of parallel-deposited passive samplers in the sewer demonstrated highest rate of positive samples and highest number of copies by using cheesecloths. Using this sorption material, monitoring of wastewater of three small catchments in the City of Dresden resulted in a rate of positive samples of 50% in comparison with composite samples (98%). During the investigation period, incidence of reported cases of SARS-CoV-2 in the catchments ranged between 16 and 170 per 100,000 persons and showed no correlation with the measured concentrations of E gene in wastewater. In contrast, constantly higher numbers of gene copies in passive vs. composite samples were found for human adenovirus and crAssphage indicating strong differences of efficacy of methods concerning the species investigated. Influenza virus A and B were sporadically detected allowing no comparison of results. The study contributes to the further understanding of possibilities and limits of passive sampling approaches in WBE.
Collapse
Affiliation(s)
- Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robin Mayer
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden, Germany
| | - Björn Helm
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Farkas K, Kevill JL, Adwan L, Garcia-Delgado A, Dzay R, Grimsley JMS, Lambert-Slosarska K, Wade MJ, Williams RC, Martin J, Drakesmith M, Song J, McClure V, Jones DL. Near-source passive sampling for monitoring viral outbreaks within a university residential setting. Epidemiol Infect 2024; 152:e31. [PMID: 38329110 PMCID: PMC10894896 DOI: 10.1017/s0950268824000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is still under-investigated. To address this, near-source passive samples were taken at four locations targeting student hall of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza viruses, and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, with exposure of 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS). Furthermore, several outbreaks of influenza A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified among the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Latifah Adwan
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | | | - Rande Dzay
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jasmine M. S. Grimsley
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- The London Data Company, London, UK
| | | | - Matthew J. Wade
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rachel C. Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Javier Martin
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| | - Mark Drakesmith
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Jiao Song
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Victoria McClure
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
9
|
Farkas K, Pântea I, Woodhall N, Williams D, Lambert-Slosarska K, Williams RC, Grimsley JMS, Singer AC, Jones DL. Diurnal changes in pathogenic and indicator virus concentrations in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123785-123795. [PMID: 37989946 PMCID: PMC10746776 DOI: 10.1007/s11356-023-30381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Wastewater-based epidemiology (WBE) has been commonly used for monitoring SARS-CoV-2 outbreaks. As sampling times and methods (i.e. grab vs composite) may vary, diurnal changes of viral concentrations in sewage should be better understood. In this study, we collected untreated wastewater samples hourly for 4 days at two wastewater treatment plants in Wales to establish diurnal patterns in virus concentrations and the physico-chemical properties of the water. Simultaneously, we also trialled three absorbent materials as passive samples as a simple and cost-efficient alternative for the collection of composite samples. Ninety-six percent of all liquid samples (n = 74) and 88% of the passive samplers (n = 59) were positive for SARS-CoV-2, whereas 87% and 97% of the liquid and passive samples were positive for the faecal indicator virus crAssphage, respectively. We found no significant daily variations in the concentration of the target viruses, ammonium and orthophosphate, and the pH and electrical conductivity levels were also stable. Weak positive correlations were found between some physico-chemical properties and viral concentrations. More variation was observed in samples taken from the influent stream as opposed to those taken from the influent tank. Of the absorbent materials trialled as passive samples, we found that tampons provided higher viral recoveries than electronegative filter paper and cotton gauze swabs. For all materials tested, viral recovery was dependent on the virus type. Our results indicate that grab samples may provide representative alternatives to 24-h composite samples if taken from the influent tank, hence reducing the costs of sampling for WBE programmes. Tampons are also viable alternatives for cost-efficient sampling; however, viral recovery should be optimised prior to use.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK.
| | - Igor Pântea
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Nick Woodhall
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Denis Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | | | - Rachel C Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Jasmine M S Grimsley
- Data Analytics & Surveillance Division, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
- The London Data Company, London, EC2N 2AT, UK
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Davey L Jones
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
10
|
West NW, Hartrick J, Alamin M, Vasquez AA, Bahmani A, Turner CL, Shuster W, Ram JL. Passive swab versus grab sampling for detection of SARS-CoV-2 markers in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164180. [PMID: 37201848 PMCID: PMC10185491 DOI: 10.1016/j.scitotenv.2023.164180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day. Collecting grab samples at a single time may miss marker presence, while autosampling throughout a day is technically challenging and expensive. This study investigates a passive sampling method that would be expected to accumulate greater amounts of viral material from sewers over a period of time. Tampons were tested as passive swab sampling devices from which viral markers could be eluted with a Tween-20 surfactant wash. Six sewersheds in Detroit were sampled 16-22 times by paired swab (4 h immersion before retrieval) and grab methods over a five-month period and enumerated for N1 and N2 SARS-CoV-2 markers using ddPCR. Swabs detected SARS-CoV-2 markers significantly more frequently (P < 0.001) than grab samples, averaging two to three-fold more copies of SARS-CoV-2 markers than their paired grab samples (p < 0.0001) in the assayed volume (10 mL) of wastewater or swab eluate. No significant difference was observed in the recovery of a spiked-in control (Phi6), indicating that the improved sensitivity is not due to improvements in nucleic acid recovery or reduction of PCR inhibition. The outcomes of swab-based sampling varied significantly between sites, with swab samples providing the greatest improvements in counts for smaller sewersheds that otherwise tend to have greater variation in grab sample counts. Swab-sampling with tampons provides significant advantages in detection of SARS-CoV-2 wastewater markers and are expected to provide earlier detection of new outbreaks than grab samples, with consequent public health benefits.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - Md Alamin
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - Azadeh Bahmani
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State, Detroit, MI 48201, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Do Nascimento J, Bichet M, Challant J, Loutreul J, Petinay S, Perrotte D, Roman V, Cauvin E, Robin M, Ladeiro MP, La Carbona S, Blin JL, Gantzer C, Geffard A, Bertrand I, Boudaud N. Toward better monitoring of human noroviruses and F-specific RNA bacteriophages in aquatic environments using bivalve mollusks and passive samplers: A case study. WATER RESEARCH 2023; 243:120357. [PMID: 37549447 DOI: 10.1016/j.watres.2023.120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs. The aim of this study is to evaluate the potential of specific accumulation systems for improving the detection of NoV in water bodies, compared to direct water analyses. Passive samplers (Zetapor filters) and three species of bivalve molluscan shellfish (BMS) (Dreissena polymorpha, Mytilus edulis and Crassostreas gigas) were used as accumulation systems to determine their performance in monitoring continental and marine waters for viruses. F-specific RNA bacteriophages (FRNAPH) were also analyzed since they are described as indicators of NoV hazard in many studies. During a one-year study in a specific area frequently affected by fecal pollution, twelve campaigns of exposure of passive samplers and BMS in continental and coastal waters were conducted. Using suitable methods, NoV (genome) and FRNAPH (infectious and genome) were detected in these accumulation systems and in water at the same time points to determine the frequency of detection but also to gain a better understanding of viral pollution in this area. The reliability of FRNAPH as a NoV indicator was also investigated. Our results clearly showed that BMS were significantly better than passive samplers and direct water analyses for monitoring NoV and FRNAPH contamination in water bodies. A dilution of viral pollution between the continental and the coastal area was observed and can be explained by the distance from the source of the pollution. Viral pollution is clearly greater during the winter period, and stakeholders should take this into consideration in their attempts to limit the contamination of food and water. A significant correlation was once again shown between NoV and FRNAPH genomes in BMS, confirming the reliability of FRNAPH as a NoV indicator. Moreover, a strong correlation was observed between NoV genomes and infectious FRNAPH, suggesting recent viral pollution since infectious particles had not been inactivated at sufficient levels in the environment. More generally, this study shows the value of using BMS as an active method for improving knowledge on the behavior of viral contamination in water bodies, the ranking of the contamination sources, and the vulnerability of downstream water bodies.
Collapse
Affiliation(s)
- Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Marion Bichet
- Actalia, Food Safety Department, F-50000 Saint-Lô, France; LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Challant
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Loutreul
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | - Véronica Roman
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Elodie Cauvin
- LABEO Manche, Virology Department, F-50000 Saint-Lô, France
| | - Maëlle Robin
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | | | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Isabelle Bertrand
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
12
|
Breulmann M, Kallies R, Bernhard K, Gasch A, Müller RA, Harms H, Chatzinotas A, van Afferden M. A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164143. [PMID: 37182773 PMCID: PMC10181866 DOI: 10.1016/j.scitotenv.2023.164143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Wastewater-based monitoring of SARS-CoV-2 has become a promising and useful tool in tracking the potential spread or dynamics of the virus. Its recording can be used to predict how the potential number of infections in a population will develop. Recent studies have shown that the use of passive samplers is also suitable for the detection of SARS-CoV-2 genome copies (GC) in wastewater. They can be used at any site, provide timely data and may collect SARS-CoV-2 GC missed by traditional sampling methods. Therefore, the aim of this study was to evaluate the suitability of passive samplers for the detection of SARS-CoV-2 GC in wastewater in the long-term at two different scales. Polyethylene-based plastic passive samplers were deployed at the city-scale level of Leipzig at 13 different locations, with samples being taken from March 2021 to August 2022. At the smaller city district level, three types of passive samplers (cotton-cloth, unravelled polypropylene plastic rope and polyethylene-based plastic strips) were used and sampled on a weekly basis from March to August 2022. The results are discussed in relation to wastewater samples taken at the individual passive sampling point. Our results show that passive samplers can indicate at a city-scale level an accurate level of positive infections in the population (positive-rate: 86 %). On a small-scale level, the use of passive samplers was also feasible and effective to detect SARS-CoV-2 GC easily and cost-effectively, mirroring a similar trend to that at a city-scale level. Thus, this study demonstrated that passive samplers provide reproducible SARS-CoV-2 GC signals from wastewater and a time-integrated measurement of the sampled matrix with greater sensitivity compared to wastewater. We thus recommend the use of passive samplers as an alternative method for wastewater-based epidemiology. Passive samplers can in particular be considered for a better estimation of infections compared to incidence levels.
Collapse
Affiliation(s)
- Marc Breulmann
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Katy Bernhard
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Gasch
- Wastewater Monitoring Department, Kommunale Wasserwerke Leipzig GmbH, Johannisgasse 7-9, 04103 Leipzig, Germany
| | - Roland Arno Müller
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Manfred van Afferden
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
13
|
Redden DJ, Stanhope T, Anderson LE, Campbell J, Krkošek WH, Gagnon GA. An innovative passive sampling approach for the detection of cyanobacterial gene targets in freshwater sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164593. [PMID: 37268123 DOI: 10.1016/j.scitotenv.2023.164593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Cyanotoxins pose significant human health risks, but traditional monitoring approaches can be expensive, time consuming, and require analytical equipment or expertise that may not be readily available. Quantitative polymerase chain reaction (qPCR) is becoming an increasingly common monitoring strategy as detection of the genes responsible for cyanotoxin synthesis can be used as an early warning signal. Here we tested passive sampling of cyanobacterial DNA as an alternative to grab sampling in a freshwater drinking supply lake with a known history of microcystin-LR. DNA extracted from grab and passive samples was analyzed via a multiplex qPCR assay that included gene targets for four common cyanotoxins. Passive samples captured similar trends in total cyanobacteria and the mcyE/ndaF gene responsible for microcystin production when compared to traditional grab samples. Passive samples also detected genes associated with the production of cylindrospermopsin and saxitoxin that were not detected in grab samples. This sampling approach proved a viable alternative to grab sampling when used as an early warning monitoring tool. In addition to the logistical benefits of passive sampling, the detection of gene targets not detected by grab samples indicates that passive sampling may allow for a more complete profile of potential cyanotoxin risk.
Collapse
Affiliation(s)
- David J Redden
- Centre for Water Resources Studies, Faculty of Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Toni Stanhope
- Centre for Water Resources Studies, Faculty of Engineering, Dalhousie University, Halifax, NS, Canada
| | - Lindsay E Anderson
- Centre for Water Resources Studies, Faculty of Engineering, Dalhousie University, Halifax, NS, Canada
| | - Jessica Campbell
- Halifax Water, 450 Cowie Hill Road, Halifax, Nova Scotia, Canada B3P 2V3
| | - Wendy H Krkošek
- Halifax Water, 450 Cowie Hill Road, Halifax, Nova Scotia, Canada B3P 2V3
| | - Graham A Gagnon
- Centre for Water Resources Studies, Faculty of Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Pico-Tomàs A, Mejías-Molina C, Zammit I, Rusiñol M, Bofill-Mas S, Borrego CM, Corominas L. Surveillance of SARS-CoV-2 in sewage from buildings housing residents with different vulnerability levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162116. [PMID: 36773920 PMCID: PMC9911146 DOI: 10.1016/j.scitotenv.2023.162116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
During the last three years, various restrictions have been set up to limit the transmission of the Coronavirus Disease (COVID-19). While these rules apply at a large scale (e.g., country-wide level) human-to-human transmission of the virus that causes COVID-19, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), occurs at a small scale. Different preventive policies and testing protocols were implemented in buildings where COVID-19 poses a threat (e.g., elderly residences) or constitutes a disruptive force (e.g., schools). In this study, we sampled sewage from different buildings (a school, a university campus, a university residence, and an elderly residence) that host residents of different levels of vulnerability. Our main goal was to assess the agreement between the SARS-CoV-2 concentration in wastewater and the policies applied in these buildings. All buildings were sampled using passive samplers while 24 h composite samples were also collected from the elderly residence. Results showed that passive samplers performed comparably well to composite samples while being cost-effective to keep track of COVID-19 prevalence. In the elderly residence, the comparison of sampling protocols (passive vs. active) combined with the strict clinical testing allowed us to compare the sensitivities of the two methods. Active sampling was more sensitive than passive sampling, as the former was able to detect a COVID-19 prevalence of 0.4 %, compared to a prevalence of 2.2 % for passive sampling. The number of COVID-19-positive individuals was tracked clinically in all the monitored buildings. More frequent detection of SARS-CoV-2 in wastewater was observed in residential buildings than in non-residential buildings using passive samplers. In all buildings, sewage surveillance can be used to complement COVID-19 clinical testing regimes, as the detection of SARS-CoV-2 in wastewater remained positive even when no COVID-19-positive individuals were reported. Passive sampling is useful for building managers to adapt their COVID-19 mitigation policies.
Collapse
Affiliation(s)
- Anna Pico-Tomàs
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ian Zammit
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain.
| |
Collapse
|
15
|
Hayes EK, Stoddart AK, Gagnon GA. Adsorption of SARS-CoV-2 onto granular activated carbon (GAC) in wastewater: Implications for improvements in passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157548. [PMID: 35882338 PMCID: PMC9308143 DOI: 10.1016/j.scitotenv.2022.157548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Based on recent studies, passive sampling is a promising method for detecting SARS-CoV-2 in wastewater surveillance (WWS) applications. Passive sampling has many advantages over conventional sampling approaches. However, the potential benefits of passive sampling are also coupled with apparent limitations. We established a passive sampling technique for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater using electronegative filters. Though, it was evident that the adsorption capacity of the filters constrained their use. This work intends to demonstrate an optimized passive sampling technique for SARS-CoV-2 in wastewater using granular activated carbon (GAC). Through bench-scale batch-adsorption studies and sewershed deployments, we established the adsorption characteristics of SARS-CoV-2 and two human feacal viruses (PMMoV and CrAssphage) onto GAC. A pseudo-second-order model best-described adsorption kinetics for SARS-CoV-2 in either deionized (DI) water and SARS-CoV-2, CrAssphage, and PMMoV in wastewater. In both laboratory batch-adsorption experiments and in-situ sewershed deployments, the maximum amount of SARS-CoV-2 adsorbed by GAC occurred at ~60 h in wastewater. In wastewater, the maximum adsorption of PMMoV and CrAssphage by GAC occurred at ~60 h. In contrast, the adsorption capacity was reached in DI water seeded with SARS-CoV-2 after ~35 h. The equilibrium assay modeled the maximum adsorption quantity (qmax) in wastewater with spiked SARS-CoV-2 concentrations using a Hybrid Langmuir-Freundlich equation, a qmax of 2.5 × 109 GU/g was calculated. In paired sewershed deployments, it was found that GAC adsorbs SARS-CoV-2 in wastewater more effectively than electronegative filters. Based on the anticipated viral loading in wastewater, bi-weekly sampling intervals with deployments up to ~96 h are highly feasible without reaching adsorption capacity with GAC. GAC offers improved sensitivity and reproducibility to capture SARS-CoV-2 RNA in wastewater, promoting a scalable and convenient alternative for capturing viral pathogens in wastewater.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Amina K Stoddart
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|