Zhou Z, Zhang H, Qian X, Li C, Deng K. The composite of bismuth oxyiodide-bismuth/nitrogen-doped carbon for photoreduction and electrochemical/photoelectrochemical dual-model sensing of Cr(VI).
Anal Chim Acta 2023;
1253:341092. [PMID:
36965994 DOI:
10.1016/j.aca.2023.341092]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/14/2023]
Abstract
A porous bismuth oxyiodide-metal bismuth/nitrogen-doped carbon (BiOI-Bi/N-C) composite composed of BiOI nanosheets, N-C sheets, and metallic Bi nanoparticles was prepared. BiOI-Bi/N-C exhibited remarkable cathodic photoelectrochemical activity and rapid adsorption capacity for Cr(VI) ions. Interestingly, the photocatalytic process of BiOI-Bi/N-C toward Cr(VI) was pH dependent. Under acidic medium, the synthesized material displayed efficient photocatalysis and achieved 95.0% photoreduction efficacy for Cr(VI) ions to Cr3+ within 30 min under visible light irradiation. Under neutral medium, Cr(VI) state showed a different photocatalytic process, and Cr(OH)3 as a product covered on BiOI-Bi/N-C, which decreased the electrochemical (EC) and photoelectrochemical (PEC) performance of BiOI-Bi/N-C. Based on the findings, BiOI-Bi/N-C was utilized as EC/PEC dual-model sensing interface for the detection of Cr(VI) ions. The presented dual-model sensing method displayed an ultralow limit of detection down to 6.8 pM for EC and 3.2 pM for PEC. It demonstrated the practical application potential for the assay of Cr(VI) in real samples.
Collapse