1
|
Liu P, Gao S, Li Y, Hou B, Liu N, Du Z, Lu J. The aging and pollution behavior of microplastics in tap water supply system subjected to residual chlorine exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8975-8985. [PMID: 40100497 DOI: 10.1007/s11356-025-36196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
This study investigated the aging and pollution behavior of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) microplastics (MPs) exposed to residual chlorine in tap water distribution systems. The ABS and PC MPs in the aging processes were analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Results revealed that 0.4 mg/L residual chlorine could induce morphological changes, increase surface oxygen-containing functional groups, and enhance the hydrophilicity of MPs at the CT value of 9216 mg·min/L. Additionally, both ABS and PC MPs released dissolved organic matter (DOM) into water, with higher DOM concentrations observed in the presence of residual chlorine. Besides, this interaction also led to the formation of trichloromethane (TCM). And the TCM production increased with higher MPs concentrations, smaller particle size, and longer chlorine exposure time.
Collapse
Affiliation(s)
- Pengxiao Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Shuai Gao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Ying Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Bin Hou
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Ning Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Zhen Du
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jing Lu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
2
|
Xiong Y, Zhao Z, Peng K, Zhai G, Huang X, Zeng H. Microplastic interactions with co-existing pollutants in water environments: Synergistic or antagonistic roles on their removal through current remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124355. [PMID: 39933381 DOI: 10.1016/j.jenvman.2025.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Composite water pollution, caused by microplastics (MPs) and co-occurring pollutants, is an emerging issue that induces synergistic toxicity. Multidimensional interactions occur between MPs and co-existing pollutants in a composite system, which alter the behavior of each component, resulting in unpredictable effects on the treatment processes. However, significant gaps exist in current review papers regarding MP‒pollutant interaction mechanisms and the corresponding synergistic or antagonistic effects on their removal processes. This review comprehensively describes the latest research in composite water pollution caused by MPs and various other pollutants with different compositions and states, systematically discusses their interaction mechanisms, and critically evaluates the impact of co-existing contaminants on the treatment performance of current remediation technologies. Based on current research progress and gaps, opportunities, challenges, and perspectives for future research directions are proposed. This review highlights state-of-the-art research related to composite water pollution caused by MPs and various pollutants, which is expected to inspire new strategies for the effective removal of multiple contaminants from the aquatic environment.
Collapse
Affiliation(s)
- Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China
| | - Gongqi Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
3
|
Ma J, Niu X, Zhang D, Wang G. Insights into the inhibitory effects of trichloroisocyanuric acid disinfectant on the phototransformation of polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175904. [PMID: 39226956 DOI: 10.1016/j.scitotenv.2024.175904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The chemical components in the natural aquatic environment have the potential to be involved in phototransformation of microplastics (MPs). Little information is available regarding the mediation effects of artificially introduced chemicals on MP phototransformation, especially those used in aquaculture water that are vulnerable to human interference. Herein, this study investigated the phototransformation process and mechanism of polypropylene microplastic (PP MPs) in presence of trichloroisocyanuric acid (TCCA) disinfectant with unique properties unlike the conventional inorganic chlorine disinfectants. The results showed that the presence of TCCA inhibited the surface photooxidation of PP MPs. Analysis of PP MP surface and reaction filtrate indicated that the inhibitory effects were likely derived from TCCA derivatives and the weakening in promoting effect of polypropylene microplastic-derived dissolved organic matter (PP-DOM) as photolytic byproducts, with the more important role of free chlorine in initial period and that of other chlorine species (i.e., the adsorbed chloride ions (Cl-), newly formed carbon-chlorine (CCl) bonds, chlorinated cyanurates, and chlorinated products) in middle and later period. The study highlights for the first time the important role of chlorine species derived from TCCA in phototransformation process of co-existed PP MPs and proposes a previously unrecognized phototransformation pathway, which will provide a new understanding and knowledge for the environmental behavior of MPs in aquaculture environment.
Collapse
Affiliation(s)
- Jinling Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Gang Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
4
|
Ma L, Liu T, Li J, Yang Q. Interaction characteristics and mechanism of Cr(VI)/Cr(III) with microplastics: Influence factor experiment and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134957. [PMID: 38925049 DOI: 10.1016/j.jhazmat.2024.134957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
The coexistence of highly toxic heavy metal chromium and new pollutants microplastics has been widely present, and the interaction behavior and mechanism of the two are crucial for their environmental effects in coexisting environments, which urgently need to be further explored. Firstly, the interaction characteristics of polyamide (PA) and polyethylene (PE) with Cr(VI)/Cr(III) were investigated, where PA exhibited higher adsorption capacity of both Cr(VI) and Cr(III) than PE among various environmental conditions. The higher adsorption energy of PA on Cr(VI)/Cr(III) was also achieved by DFT calculation, and the bending configuration of PA during the adsorption process may be beneficial for its interaction with Cr. Then, the combination of characterization analysis and DFT calculation showed that significant chemical bonding occurred in the interaction between CO bond of PA and Cr(III), weak chemical interactions occurred in the adsorption of PE with Cr(III) and PA with Cr(VI), while the adsorption of PE with Cr(VI) was mainly physical effects. This study provides theoretical support for pollution control of microplastics and chromium in co-existing environment.
Collapse
Affiliation(s)
- Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Tong Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Parveen N, Singh H, Vanapalli KR, Goel S. Leaching of organic matter from cigarette butt filters as a potential disinfection by-products precursor. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134976. [PMID: 38917631 DOI: 10.1016/j.jhazmat.2024.134976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The study aimed to evaluate cigarette butt filters (CBFs) as a potential source of dissolved organic carbon (DOC) in water leading to the formation of disinfection by-products. Two different forms of CBFs - intact (I) and disintegrated (D), as they occur in the environment, were selected for leaching in chlorinated (CI, CD), non-chlorinated (NI, ND), and highly chlorinated (HCD) water samples. The UV absorbance profiles of the leachate samples showed that intact CBFs exhibited higher DOC leaching compared to the disintegrated ones, which was further accentuated in chlorinated samples (CI > CD > NI > ND). The Fourier Transform Infrared spectra of the leachates revealed the presence of characteristic functional groups of cellulose acetate and its chlorinated derivatives, indicating the potential degradation of the polymer. Moreover, trihalomethane (THM) formation in chlorinated samples was relatively higher in CI samples (2 - 11.5 times) compared to CD, consistent with the DOC leaching trends. Further, the speciation characteristics of different THMs in both CI and CD samples were similar. Although spectral and morphological analyzes of CI and CD samples revealed negligible variation, HCD samples depicted significant surface roughness characterized by the formation of pits and holes, along with the evolution of crystallinity. This suggested accelerated degradation of CBFs and disruption of acetyl groups as a factor of elevated chlorine concentrations.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Civil Engineering Department, National Institute of Technology Mizoram, Aizawl 796012, India
| | - Hemant Singh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Civil Engineering Department, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Kumar Raja Vanapalli
- Civil Engineering Department, National Institute of Technology Mizoram, Aizawl 796012, India.
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Civil Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
6
|
Parveen N, Joseph A, Goel S. Leaching of organic matter from microplastics and its role in disinfection by-product formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167640. [PMID: 37806590 DOI: 10.1016/j.scitotenv.2023.167640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Natural organic matter (NOM) is the primary precursor of disinfection by-products (DBPs). However, as emerging environmental contaminants continue to increase in natural waters, there is a possibility of new precursors of DBPs. We investigated the potential of microplastics (MPs), a growing environmental concern, for leaching organic matter (OM) and subsequent DBP formation. Two experimental setups were used, including chlorinated water containing MPs (Cl2-MP), and non-chlorinated water containing MPs (Non-Cl2-MP), using polyethylene (PE), polyethylene tetrahydrate (PET), polypropylene (PP), and polyvinyl chloride (PVC) as MP materials. The UV absorbance spectra of Cl2-PET/PP/PVC showed peaks at 218 nm, which were significantly correlated with dissolved organic carbon (DOC), indicating lower aromaticity of the leached OM. The DOC concentrations in Cl2-MP samples were several times higher than those in Non-Cl2-MP samples. The leached OM from MPs formed trihalomethanes (THMs) and haloacetic acids (HAAs) in Cl2-MP samples. Among the MPs tested, PVC showed the highest total THM formation after 7 days, followed by PET, PE, and PP. Brominated THMs were predominant, while HAAs were highly chlorinated. THM formation increased with contact time for PE, PET, and PVC, and decreased for PP. Compared to THMs, the concentration of HAAs was low (highest total THM = 185.5 μg/L per g-MP and highest total HAA = 120.7 μg/L per g-MP). Further, the total THM concentration decreased and the total HAA concentration increased over the reaction period, indicating the leaching of different types of OM with increasing contact time. Additionally, the differences in the pattern of DOC leaching and DBP formation among different MPs suggested changes in the leached OM.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
7
|
Luo H, Tu C, He D, Zhang A, Sun J, Li J, Xu J, Pan X. Interactions between microplastics and contaminants: A review focusing on the effect of aging process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165615. [PMID: 37481081 DOI: 10.1016/j.scitotenv.2023.165615] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Microplastics (MPs) in the environment are a major global concern due to their persistent nature and wide distribution. The aging of MPs is influenced by several processes including photodegradation, thermal degradation, biodegradation and mechanical fragmentation, which affect their interaction with contaminants. This comprehensive review aims to summarize the aging process of MPs and the factors that impact their aging, and to discuss the effects of aging on the interaction of MPs with contaminants. A range of characterization methods that can effectively elucidate the mechanistic processes of these interactions are outlined. The rate and extent of MPs aging are influenced by their physicochemical properties and other environmental factors, which ultimately affect the adsorption and aggregation of aged MPs with environmental contaminants. Pollutants such as heavy metals, organic matter and microorganisms have a tendency to accumulate on MPs through adsorption and the interactions between them impact their environmental behavior. Aging enhances the specific surface area and oxygen-containing functional groups of MPs, thereby affecting the mechanism of interaction between MPs and contaminants. To obtain a more comprehensive understanding of how aging affects the interactions, this review also provides an overview of the mechanisms by which MPs interact with contaminants. In the future, there should be further in-depth studies of the potential hazards of aged MPs in different environments e.g., soil, sediment, aquatic environment, and effects of their interaction with environmental pollutants on human health and ecology.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chaolin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Du T, Shao S, Qian L, Meng R, Li T, Wu L, Li Y. Effects of photochlorination on the physicochemical transformation of polystyrene nanoplastics: Mechanism and environmental fate. WATER RESEARCH 2023; 243:120367. [PMID: 37499544 DOI: 10.1016/j.watres.2023.120367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
With the increasingly severe plastic pollution, the environmental behavior and effects of nanoplastics (NPs) have attracted much attention. The transformation of NPs in natural and engineered environments (e.g., photooxidation, disinfection) can significantly alter the physicochemical properties and thus affect the fate and toxicity of NPs. However, how solar irradiation with free chlorine, an inevitable process once NPs enter the environment from wastewater treatment plants, affects the physicochemical properties of NPs is still unclear. In this study, the behavior and mechanism of polystyrene (PS) NPs transformation in the solar/chlorine process were evaluated. The results demonstrated that solar irradiation significantly enhanced the physicochemical transformation of PS NPs during chlorination, including chain scission, surface oxidation, and organic release. In addition, two-dimensional correlation spectroscopy analysis using Fourier transform infrared spectroscopy and reactive species quenching experiments showed that chain scission and surface oxidation of PS NPs were primarily caused by direct oxidation of hydroxyl radicals and ozone, while reactive chlorine species played an indirect role. Moreover, photochlorination-induced changes in the properties of PS NPs enhanced the colloidal stability in synthetic wastewater solution and toxicity to Caenorhabditis elegans. These findings reveal an important transformation behavior of nanoplastics in the environment and emphasize the importance of accounting for photochlorination to accurately assess the ecological risk of nanoplastics.
Collapse
Affiliation(s)
- Tingting Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Song Shao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Liwen Qian
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ru Meng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yao Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
10
|
Miao M, Yu B, Cheng X, Hao T, Dou Y, Zhang M, Li Y. Effects of chlorination on microplastics pollution: Physicochemical transformation and chromium adsorption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121254. [PMID: 36773686 DOI: 10.1016/j.envpol.2023.121254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The large number of microplastics (MPs) that appear in the environment has drawn much attention. Few studies, however, have examined the transformation of MPs in water treatment processes and their effects on environmental pollutants. In this study, the alteration of the physicochemical characteristics of polyethylene and thermoplastic polyurethane upon chlorination, as well as the influence of this alteration on contaminants, were investigated. The findings indicated that microplastics underwent significant morphology and O-functional groups changes during chlorination. It is noteworthy that the mechanisms controlling the chlorination treatment of the two MPs are clearly different. The results of aggregation and adsorption experiments showed that the chlorination treatment enhanced the aggregation ability of the MPs in brine and their interaction with Cr(VI). The present discoveries further suggested that water treatment could alter the migration capacity of microplastics and the distribution of contaminants in the aqueous environment by altering the adsorption of microplastics to the contaminants.
Collapse
Affiliation(s)
- Manhong Miao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Bingqing Yu
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Xuhua Cheng
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Yuanyuan Dou
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Min Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yao Li
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China.
| |
Collapse
|
11
|
Yin L, Wu N, Qu R, Zhu F, Ajarem JS, Allam AA, Wang Z, Huo Z. Insight into the photodegradation and universal interactive products of 2,2',4,4'-tetrabromodiphenyl ether on three microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130475. [PMID: 36455331 DOI: 10.1016/j.jhazmat.2022.130475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The transformation process of contaminants on microplastics (MPs) exposed to sunlight has attracted increasing attention. However, the interactions between them are typically disregarded; therefore, this work investigated the photodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on three MPs (polystyrene (PS), polypropylene (PP) and polyethylene (PE)) and the interactions between these two. The inhibition of aged PS on the elimination of BDE-47 was due to light shielding, while aged PP and PE increased the degradation rate. More hydroxyl radicals (HO•) was detected in the PS system, which resulted in the higher degradation rate of BDE-47 on PS. A total of 33 different products were identified and four reaction pathways were presented, and the reaction mechanisms mainly included debromination, hydroxylation, carbon-oxygen-bond breaking and interactive reactions. The Ecological Structure Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (TEST) programs were used to evaluate the toxicity of reaction products, and the results indicated that even though BDE-47 was the most toxic, the interaction products were still toxic or harmful to aquatic organisms. This study provides significant information on the photodegradation of contaminants on common microplastics and their interaction, which cannot be ignored.
Collapse
Affiliation(s)
- Linning Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China.
| |
Collapse
|
12
|
Ge J, Wang M, Liu P, Zhang Z, Peng J, Guo X. A systematic review on the aging of microplastics and the effects of typical factors in various environmental media. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Wang Z, Ding J, Song X, Zheng L, Huang J, Zou H, Wang Z. Aging of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends under different conditions: Environmental concerns on biodegradable plastic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158921. [PMID: 36411603 DOI: 10.1016/j.scitotenv.2022.158921] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable plastics (BPs) have been used to replace conventional plastics owing to their environmental harmless and ease of degradation. However, the aging processes of BPs in different environments remain unclear. In this study, we used poly (lactic acid)/poly (butylene adipate-co-terephthalate) (PLA/PBAT) films as model BPs and investigated the 30-d aging behavior of PLA/PBAT films under four conditions (i.e., air without ultraviolet (UV) irradiation, water without UV irradiation, air with UV irradiation, and water with UV irradiation). Our results showed that the aging of PLA/PBAT films was insignificant in all groups except the water with UV irradiation group. In the physical characterization, the PLA/PBAT films exhibited layered structures in water with UV irradiation condition, and the submicron- and nano-sized particles adhered to the bigger-sized fragments. In the chemical characterization, the carbonyl index (CI) of PLA/PBAT films in water with UV irradiation condition decreased from 3.84 to 1.36, and the oxygen-to-carbon (O/C) ratio reached a maximum of 1.78 at 20 d and declined to 0.49 at 30 d, indicating that the oxygen-containing functional groups underwent bond breaking and showed a rapid aging process. This is mainly attributed to the combined effect of hydrolysis and photolysis increases the contact area of PLA/PBAT films and accelerates the aging process. Furthermore, based on two-dimensional correlation spectroscopy (2D-COS) analysis, we suggest that free radicals generated in water with UV irradiation conditions also accelerate the aging process of PLA/PBAT films. This study explored the aging processes of PLA/PBAT films under different conditions, which could aid in clarifying the environmental behavior and provide further information to assess the potential risks of BPs.
Collapse
Affiliation(s)
- Zhenguo Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lixing Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jichao Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| |
Collapse
|