1
|
Zhang ML, Li XP, Gao LF, Liu J, Bi ZJ, Miao YH, Shan Y, Yu HL. Nobiletin, an activator of the pyruvate kinase isozyme M1/M2 protein, upregulated the glycolytic signalling pathway and alleviated depressive-like behaviour caused by artificial light exposure at night in zebrafish. Food Chem 2025; 463:141328. [PMID: 39305673 DOI: 10.1016/j.foodchem.2024.141328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 11/06/2024]
Abstract
We established a zebrafish model of depression-like behaviour induced by exposure to artificial light at night (ALAN) and found that nobiletin (NOB) alleviated depression-like behaviour. Subsequently, based on the results of a 24-h free movement assay, clock gene expression and brain tissue transcriptome sequencing, the glycolysis signalling pathway was identified as a potential target through which NOB exerted antidepressant effects. Using the ALAN zebrafish model, we found that supplementation with exogenous L-lactic acid alleviated depressive-like behaviour. Molecular docking and molecular dynamics simulations revealed an inter-molecular interaction between NOB and the pyruvate kinase isozyme M1/M2 (PKM2) protein. We then used compound 3 k to construct a zebrafish model in which PKM2 was inhibited. Our analysis of this model suggested that NOB alleviated depression-like behaviour via inhibition of PKM2. In summary, NOB alleviated depressive-like behaviour induced by ALAN in zebrafish via targeting of PKM2 and activation of the glycolytic signalling pathway.
Collapse
Affiliation(s)
- Meng-Ling Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xiao-Peng Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410000, China
| | - Li-Fang Gao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jian Liu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410000, China
| | - Zi-Jun Bi
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yu-Han Miao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410000, China
| | - Huan-Ling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Abstract
Artificial light at night is a growing environmental problem that is especially pronounced in urban environments. Yet, impacts on urban wildlife have received scant attention and patterns and consequences are largely unknown. Here, I present a conceptual framework outlining the challenges species encounter when exposed to urban light pollution and how they may respond through plastic adjustments and genetic adaptation. Light pollution interferes with biological rhythms, influences behaviors, fragments habitats, and alters predation risk and resource abundance, which changes the diversity and spatiotemporal distribution of species and, hence, the structure and function of urban ecosystems. Furthermore, light pollution interacts with other urban disturbances, which can exacerbate negative effects on species. Given the rapid growth of urban areas and light pollution and the importance of healthy urban ecosystems for human wellbeing, more research is needed on the impacts of light pollution on species and the consequences for urban ecosystems.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Tong JCK, Wun AHL, Chan TTH, Lau ESL, Lau ECF, Chu HHK, Lau APS. Simulation of vertical dispersion and pollution impact of artificial light at night in urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166101. [PMID: 37558066 DOI: 10.1016/j.scitotenv.2023.166101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The use of artificial light at night (ALAN) enables social and commercial activities for urban living. However, the excessive usage of lighting causes nuisance and waste of energy. Light is provided to illuminate target areas on the street level where activities take place, yet light can also cause trespass to residents at the floors above. While regulations are beginning to cover light design, simulation tools for the outdoor environment have also become more popular for assessing the design condition. Simulation tools allow visualisation of the impact of the selected light sources on those who are affected. However, this cause-and-effect relationship is not easy to determine in the complex urban environment. The current work offers a simple methodology that takes site survey results and correlates them with the simulation model to determine lighting impact on the investigated area in 3D. Four buildings in two mixed commercial and residential streets in Hong Kong were studied. Data collection from each residential building requires lengthy work and permission from each household. Therefore, a valid lighting simulation model could help determine the light pollution impact in the area. A light model using DIALux is developed and calibrated by correlating the simulated data with the actual measured data. The correlation value R2 achieved ranged from 0.95 to 0.99, verifying the accuracy of this model and matched from 340 lx to 46 lx for the lower to higher floors of one building and 10 lx to 4 lx for floors of another building. This model can also be applied to human health research, by providing light-level data on residential windows in an area or determining the environmental impact of a development project.
Collapse
Affiliation(s)
- Jimmy C K Tong
- Sustainability, Arup, Hong Kong, Level 5 Festival Walk, 80 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong.
| | - Anthonio H L Wun
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Thomas T H Chan
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Edmond S L Lau
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Edwin C F Lau
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Hahn H K Chu
- The Green Earth, Hong Kong, Room 703, 7/F, Kwai Cheong Centre, No.50 Kwai Cheong Road, Kwai Chung, Hong Kong.
| | - Arthur P S Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Yan Z, Tan M. Changes in light pollution in the Pan-Third Pole's protected areas from 1992 to 2021. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|