1
|
Mu W, Wang L, Chang C. Photocatalytic adsorption/degradation of tetracycline by S-scheme BiOI/BiOIO 3 p-n heterojunction from dissociation of BiOIO 3in-situ solvothermal process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120630. [PMID: 38527386 DOI: 10.1016/j.jenvman.2024.120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/10/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
The pollution of tetracycline (TC) had attracted more and more attention due to its unprecedented use and potential hazards. The S-scheme BiOI/BiOIO3 p-n heterojunction was successfully fabricated by in-situ solvothermal treatment of BiOIO3, and was used for the removal of TC from aqueous solutions. The results demonstrated that the construction of S-scheme p-n heterojunction could significantly improve the removal of TC by photocatalytic adsorption/degradation synergism. The removal rate of TC was significantly enhanced after solvothermal modification. The three main reasons for the enhanced removal efficiency were as follows: first, the light absorption range of the BiOIO3 was enhanced by solvothermal treatment; secondly, the construction of the heterojunction was beneficial to the valid separation and migration of the photo-generated carriers; finally, the adsorption of TC enhanced the speed of TC reaching the semiconductor interface and reacting with active species. Trapping tests were conducted to reveal that •O2- and 1O2 are the main reactive species for TC degradation. The nine degradation products were identified by the high performance liquid chromatography-mass spectrometry (HPLC-MS), and the three reaction pathways were deduced. A possible S-scheme p-n heterojunction photocatalytic mechanism was presented on the basis of band structures and active species capturing experiment.
Collapse
Affiliation(s)
- Weina Mu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China; College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Lijuan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| | - Chun Chang
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
2
|
Ravikumar MP, Quach TA, Urupalli B, Murikinati MK, Muthukonda Venkatakrishnan S, Do TO, Mohan S. Observation of inherited plasmonic properties of TiN in titanium oxynitride (TiO xN y) for solar-drive photocatalytic applications. ENVIRONMENTAL RESEARCH 2023; 229:115961. [PMID: 37086885 DOI: 10.1016/j.envres.2023.115961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
This study demonstrates the synthesis of titanium oxynitride (TiOxNy) via a controlled step-annealing of commercial titanium nitride (TiN) powders under normal ambience. The structure of the formed TiOxNy system is confirmed via XRD, Rietveld refinements, XPS, Raman, and HRTEM analysis. A distinct plasmonic band corresponding to TiN is observed in the absorption spectrum of TiOxNy, indicating that the surface plasmonic resonance (SPR) property of TiN is being inherited in the resulting TiOxNy system. The prerequisites such as reduced band gap energy, suitable band edge positions, reduced recombination, and enhanced carrier-lifetime manifested by the TiOxNy system are investigated using Mott-Schottky, XPS, time-resolved and steady-state PL spectroscopy techniques. The obtained TiOxNy photocatalyst is found to degrade around 98% of 10 ppm rhodamine B dye in 120 min and produce H2 at a rate of ∼1546 μmolg-1h-1 under solar light irradiation along with consistent recycle abilities. The results of cyclic voltammetry, linear sweep voltammetry, electrochemical impedance and photocurrent studies suggest that this evolved TiOxNy system could be functioning via plasmonic Ohmic interface rather than the typical plasmonic Schottky interface due to their amalgamated band structures in the oxynitride phase.
Collapse
Affiliation(s)
- Mithun Prakash Ravikumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Toan-Anh Quach
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Bharagav Urupalli
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Mamatha Kumari Murikinati
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Shankar Muthukonda Venkatakrishnan
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Sakar Mohan
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
3
|
Qin T, Wei J, Zhou C, Zeng X, Zhou J, Li YY. Directional crystal facets deposition constructed BiVO4/Ag/MnO2 with plasmon resonance for enhanced photocatalytic degradation of antibiotics in water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Recent Progress in Photocatalytic Removal of Environmental Pollution Hazards in Water Using Nanostructured Materials. SEPARATIONS 2022. [DOI: 10.3390/separations9100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Water pollution has become a critical issue because of the Industrial Revolution, growing populations, extended droughts, and climate change. Therefore, advanced technologies for wastewater remediation are urgently needed. Water contaminants are generally classified as microorganisms and inorganic/organic pollutants. Inorganic pollutants are toxic and some of them are carcinogenic materials, such as cadmium, arsenic, chromium, cadmium, lead, and mercury. Organic pollutants are contained in various materials, including organic dyes, pesticides, personal care products, detergents, and industrial organic wastes. Nanostructured materials could be potential candidates for photocatalytic reduction and for photodegradation of organic pollutants in wastewater since they have unique physical, chemical, and optical properties. Enhanced photocatalytic performance of nanostructured semiconductors can be achieved using numerous techniques; nanostructured semiconductors can be doped with different species, transition metals, noble metals or nonmetals, or a luminescence agent. Furthermore, another technique to enhance the photocatalytic performance of nanostructured semiconductors is doping with materials that have a narrow band gap. Nanostructure modification, surface engineering, and heterojunction/homojunction production all take significant time and effort. In this review, I report on the synthesis and characterization of nanostructured materials, and we discuss the photocatalytic performance of these nanostructured materials in reducing environmental pollutants.
Collapse
|