1
|
El-Deen AK, Hussain CM. The cutting edge of surveillance: Exploring high-resolution mass spectrometry in wastewater-based epidemiology for monitoring forensic samples. J Pharm Biomed Anal 2025; 260:116821. [PMID: 40081308 DOI: 10.1016/j.jpba.2025.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Criminal activity has always been detected through forensic evidence. However, the potential for using such evidence to stop crimes in their tracks or slow them down has not yet been completely realized. There is a lot of potential for assessing trace quantities of chemicals in wastewater systems to provide effective forensic information. Wastewater-based epidemiology (WBE) has emerged in the last decades as a crucial epidemiological information source for collecting data on community-wide health. It can add important knowledge about illicit drug consumption and/or disposal, exposure to pathogens, infectious diseases, industrial pollutants, and antibiotic resistance. The use of high-resolution mass spectrometry (HRMS) in WBE has revolutionized the field by enabling the detection and quantification of these compounds. This review article explores the cutting edge of surveillance in WBE through applying HRMS techniques for forensic sample monitoring. It delves into the most recent WBE applications, examining their advantages and disadvantages. It also explores the potential for obtaining a more comprehensive evaluation of forensic samples. Furthermore, the application of these approaches to generate "forensic intelligence" for surveillance and criminal interruption is discussed, with examples of how this data can be integrated into future work.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Zhao Z, Yuan J, Zheng Q, Tscharke BJ, Boogaerts T, Wang Z, Chen S, O'Brien JW, van Nuijs ALN, Covaci A, Mueller J, Thai PK. Utilizing national wastewater and sales data to derive and validate the correction factors of five common antidepressants for wastewater-based epidemiology. WATER RESEARCH 2025; 276:123263. [PMID: 39983321 DOI: 10.1016/j.watres.2025.123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Monitoring antidepressant use is important for understanding mental health treatment status in populations and detecting potential misuse. Wastewater-based epidemiology (WBE) is a cost-effective approach to conduct such monitoring but requires valid correction factors (CFs) to accurately convert wastewater mass loads into consumption estimates. Most existing CFs are calculated from pharmacokinetic studies with small cohorts and are not specifically validated for WBE purposes. This study aimed to fill this knowledge gap by calibrating and validating the CFs for 5 commonly prescribed antidepressants. CFs were calibrated by dividing corresponding geo-located sales data by wastewater mass loads from 18 wastewater treatment plants in Australia for the same 3.5-year period. The refined CFs were 9.0 for fluoxetine, 6.4 for venlafaxine, and 25 for quetiapine. For the case of racemic citalopram and the pure S-enantiomer (escitalopram), individual CFs were proposed as 2.0 and 11, respectively. To validate their applicability, the new CFs were applied to independent datasets of wastewater samples collected in Belgium (2019 to 2022) and Australia (2020) and compared with sales data. The new calibrated CFs produced more accurate wastewater-based estimates of consumption for citalopram, escitalopram, fluoxetine, venlafaxine, and quetiapine, enhancing the capability of WBE in public health surveillance.
Collapse
Affiliation(s)
- Zeyang Zhao
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jingyi Yuan
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Tim Boogaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Zhe Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Shuo Chen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia.
| |
Collapse
|
3
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. A novel data-driven screening method of antidepressants stability in wastewater and the guidance of environmental regulations. ENVIRONMENT INTERNATIONAL 2025; 198:109427. [PMID: 40188602 DOI: 10.1016/j.envint.2025.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/05/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
Wastewater-based epidemiology (WBE) represents a powerful technique for quantifying the attenuation characteristics and consumption of pharmaceuticals. In addition to WBE, no further methods have been developed to assess the wastewater stability related to antidepressants (ADs). In this study, the biodegradability, solubility, and adsorption or partition of 66 ADs were objectively scored according to the relevant guidelines of the Organisation for Economic Cooperation and Development. An assessment framework and the MSSL-RealFormer classification model of ADs wastewater stability were constructed based on physicochemical properties to predict the ADs wastewater stability and the quantitative structure-activity relationship. The constructed MSSL-RealFormer classification model exhibited a markedly higher prediction accuracy than traditional methods. Furthermore, 15 high-stable ADs in wastewater with low biodegradability, high solubility, and low adsorption or partition were identified. SHapley Additive exPlanation method demonstrated that group hydrophobicity, electrostatic and van der Waals forces exerted a significant influence on the ADs wastewater stability. And molecular stability was found to be significantly correlated with the ADs wastewater stability. A combination of density functional theory and MSSL-RealFormer classification model was employed to identify 17 high-stable transformation products of nine medium- and low-stable ADs in wastewater. The Ecological Structure Activity Relationships model demonstrated that bupropion, tapentadol and chlorpheniramine exhibited significant acute toxicity to the aquatic food chain. In this study, a novel deep learning model was constructed to rapidly screen the correlation between the ADs wastewater stability and their molecular structures. It is anticipated to prove a favorable tool for optimizing the wastewater stability screening of pharmaceuticals.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China.
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Fontanals N, Marcé RM, Montes R, Rodil R, González-Mariño I, Valcárcel Y, Rodríguez-Mozaz S, Borrull F, Quintana JB, Pocurull E. Wastewater-based epidemiology to assess pharmaceutical consumption. Spanish perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176108. [PMID: 39265683 DOI: 10.1016/j.scitotenv.2024.176108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Wastewater-based epidemiology (WBE) is a well-established approach that can provide objective and real-time data on the consumption of substances such as pharmaceuticals. However, most of the studies reported so far compares consumption data obtained using WBE with those derived from prescription data from public health systems, which is often incomplete and might represent a source of uncertainty. This study aims to compare the measured pharmaceutical consumption back calculated with the WBE approach with consumption derived from dispensed pharmaceuticals in two regions of Spain, managed by two different Health Systems. To do so, a group of 17 pharmaceuticals, including the most representative ones of every therapeutic family, were monitored in influent wastewater (IWW) samples collected over a week campaign in spring 2022 at four different wastewater treatment plants (WWTPs) in Spain: two WWTPs in Madrid city (center of Spain) and two WWTPs in Catalonia (Northeast of Spain). Population-normalized daily loads (PNDL) revealed that the patterns of pharmaceutical occurrence in the different WWTPs are very similar, being acetaminophen, 4-acetamidoantipyrine and valsartan the pharmaceuticals with the highest PNDL values: 17162 ± 1457 mg day-1 1000 inh-1 for acetaminophen, 2365 ± 696 and 2429 ± 263 mg day-1 1000 inh-1 for 4-acetamidoantipyrine, 2006 ± 541 and 2041 ± 352 mg day-1 1000 inh-1 for valsartan. Pharmaceutical PNLDs were then transformed into measured pharmaceutical consumption (MC) and compared with dispensed consumption (DC) data obtained from the pharmacies in the catchment area where the WWTPs are located. A ratio MC/DC within 0.8 to 1.2 was obtained for 11 out of the 17 studied pharmaceuticals. Highlighting a match in all the cardiovascular system pharmaceuticals, with the exception of losartan (1.29-1.39 ratio) and valsartan (1.35-1.43) in all WWTPs. In summary, the degree of correlation between MC/DC is higher than those previously reported comparing with the prescribed pharmaceutical consumption.
Collapse
Affiliation(s)
- Núria Fontanals
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Tarragona, Spain.
| | - Rosa Maria Marcé
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Tarragona, Spain
| | - Rosa Montes
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Iria González-Mariño
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Yolanda Valcárcel
- Grupo de Evaluación de Riesgos en Salud y Medioambiente, Universidad Rey Juan Carlos, Madrid, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Tarragona, Spain
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Pocurull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Tarragona, Spain
| |
Collapse
|
5
|
Beltrán de Heredia I, González-Gaya B, Zuloaga O, Garrido I, Acosta T, Etxebarria N, Ruiz-Romera E. Occurrence of emerging contaminants in three river basins impacted by wastewater treatment plant effluents: Spatio-seasonal patterns and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174062. [PMID: 38917906 DOI: 10.1016/j.scitotenv.2024.174062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.
Collapse
Affiliation(s)
- Irene Beltrán de Heredia
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Belén González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Itziar Garrido
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Teresa Acosta
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Zhao Z, Zheng Q, Tscharke BJ, Ahmed F, O'Brien JW, Gao J, Covaci A, Thai PK. Refining the correction factor for a better monitoring of antidepressant use by wastewater-based epidemiology: A case study of amitriptyline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172057. [PMID: 38552972 DOI: 10.1016/j.scitotenv.2024.172057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Wastewater-based epidemiology (WBE) is proposed as a cost-effective approach to objectively monitor the antidepressant use but it requires more accurate correction factors (CF) than what had been used in previous studies. Amitriptyline is a popular prescription medicine for treating depression and nerve pain, which could be prone to misuse and need monitoring. The CF of amitriptyline employed in previous WBE studies varied from 10 to 100, leading to substantial disparities between WBE estimates and expected mass of antidepressants in wastewater. Hence, this study aimed to take amitriptyline as a case study and refine the CF by correlating mass loads measured in wastewater from 12.2 million inhabitants collected during the 2016 Census with corresponding annual sales data. The triangulation of WBE data and sales data resulted in a newly-derived CF of 7, which is significantly different from the CF values used in previous studies. The newly derived CF was applied to a secondary, multi-year (2017 to 2020) WBE dataset for validation against sales data in the same period, demonstrating the estimated amitriptyline use (380 ± 320 mg/day/1000 inhabitants) is consistent with sales data (450 ± 190 mg/day/1000 inhabitants). When we applied the new CF to previous studies, the wastewater consumption loads matched better to prescription data than previous WBE estimations. The refined CF of amitriptyline can be used in future WBE studies to improve the accuracy of the consumption estimates.
Collapse
Affiliation(s)
- Zeyang Zhao
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Fahad Ahmed
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
7
|
Tomsone LE, Neilands R, Kokina K, Bartkevics V, Pugajeva I. Pharmaceutical and Recreational Drug Usage Patterns during and Post COVID-19 Determined by Wastewater-Based Epidemiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:206. [PMID: 38397695 PMCID: PMC10888181 DOI: 10.3390/ijerph21020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Wastewater-based epidemiology (WBE) was applied to evaluate the consumption trends of pharmaceuticals (i.e., antibiotics, non-steroidal anti-inflammatory drugs, antiepileptics, antihypertensives, and others), as well as recreational drugs (caffeine, alcohol, and nicotine), in Latvia from December 2020 to July 2023. The time period covers both the COVID-19 pandemic and the post-pandemic periods; therefore, the impact of the implemented restrictions and the consequences of the illness in terms of the usage of pharmaceuticals thereon were investigated. Additionally, the seasonality and impact of the seasonal flu and other acute upper respiratory infections were studied. The results revealed that the pandemic impacted the consumption of alcohol, nicotine, and caffeine, as well as several pharmaceuticals, such as antihypertensives, antidepressants, psychiatric drugs, and the painkiller ibuprofen. The findings suggest that the imposed restrictions during the pandemic may have had a negative effect on the population's health and mental well-being. Distinct seasonal trends were discovered in the consumption patterns of caffeine and alcohol, where lower use was observed during the summer. The seasonal consumption trends of pharmaceuticals were discovered in the case of antibiotics, the antiasthmatic drug salbutamol, and the decongestant xylometazoline, where higher consumption occurred during colder seasons.
Collapse
Affiliation(s)
- Laura Elina Tomsone
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia; (L.E.T.)
| | - Romans Neilands
- Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas Street 6B, LV-1048 Riga, Latvia
| | - Kristina Kokina
- Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas Street 6B, LV-1048 Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia; (L.E.T.)
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia; (L.E.T.)
| |
Collapse
|
8
|
Laimou-Geraniou M, Quireyns M, Boogaerts T, Van Wichelen N, Heath D, van Nuijs ALN, Covaci A, Heath E. Retrospective spatiotemporal study of antidepressants in Slovenian wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166586. [PMID: 37640073 DOI: 10.1016/j.scitotenv.2023.166586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
This study utilizes wastewater-based epidemiology (WBE) to evaluate spatiotemporal changes in the consumption of antidepressants before and during the COVID-19 pandemic in Slovenia. Composite 24-h influent wastewater samples (n = 210) were collected from six wastewater treatment plants between summer 2019 and spring 2021. The samples were extracted using 96-well solid-phase extraction and analysed by liquid chromatography-tandem mass spectrometry. The measured concentrations of target antidepressant biomarkers were then converted to population-normalised mass loads (PNMLs), taking into account flow rate and catchment population. Ten biomarkers, including amitriptyline, bupropion, bupropion-OH, citalopram, norcitalopram, normirtazapine, venlafaxine, O-desmethylvenlafaxine, trazodone, and moclobemide, were above the lower limit of quantification and were included in the spatiotemporal temporal assessment. The highest PNMLs were detected for O-desmethylvenlafaxine (mean ± SD: 82.1 ± 21.2 mg/day/1000 inhabitants) and venlafaxine (38.0 ± 10.6 mg/day/1000 inhabitants), followed by citalopram (27.0 ± 10.7 mg/day/1000 inhabitants). In addition, the mean metabolite/parent compound ratios were comparable with other WBE studies indicating consumption rather than direct disposal. Overall, the results indicated significant spatiotemporal variations depending on the location, and the PNMLs of most biomarkers increased during the first wave of the COVID-19 pandemic (spring of 2020). However, no clear spatial patterns were revealed related to the pandemic.
Collapse
Affiliation(s)
- Maria Laimou-Geraniou
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Maarten Quireyns
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Tim Boogaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Natan Van Wichelen
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - David Heath
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ester Heath
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Ortiz-Prado E, Izquierdo-Condoy JS, Mora C, Vasconez-Gonzalez J, Fernandez-Naranjo R. Poor regulation, desperation, and misinformation, a countrywide analysis of self-medication and prescription patterns in Ecuador during the COVID-19 pandemic. Res Social Adm Pharm 2023; 19:1579-1589. [PMID: 37659922 DOI: 10.1016/j.sapharm.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND The rapid spread of the SARS-CoV-2 virus during the early phase of the pandemic led to an unprecedented global health crisis. Various factors have influenced self-medication practices among the general population and unsubstantiated prescribing practices among healthcare professionals. OBJECTIVE This study aimed to describe trends in the purchase and sale of medicines during the COVID-19 pandemic period (2020-2022) in Ecuador, by comparing them with pre-pandemic periods. METHODS In this study, a cross-sectional design was employed to conduct a comprehensive analysis of 28 pharmacological groups, categorized according to the Anatomical Therapeutic Chemical Classification (ATC). Utilizing an integrated drug consumption database, the study examined physician prescribing data, medicine usage, and spending levels in Ecuador during the COVID-19 pandemic. The analysis involved computing absolute differences in monthly resolution, calculating excessive expenditure in comparison to previous yearly averages, and using Defined Daily Dose (DDD) methodology for internationally comparable results. Furthermore, a correlation analysis was performed to investigate potential associations between prescribed and consumed medicines and the number of new cases and deaths. RESULTS In Ecuador, the average yearly expenditure among these groups prior to the pandemic (2017-2019) amounted to $150,646,206 USD, whereas during 2020 and 2021, the same groups represented a total expenditure of $228,327,210, reflecting a significant increase. The excess expenditure during this period reached 51.4%, equivalent to $77,681,004 USD. Notably, 13% of this expenditure consisted of Over the Counter (OTC) Medicines. The study also identified a remarkable surge in sales of ivermectin, which increased by 2,057%, and hydroxychloroquine, which increased by 171%, as measured by DDD. CONCLUSIONS This study highlights the substantial consumption of medicines by the population in Ecuador during the pandemic. It is concerning that many medications were sold without proven therapeutic indications, indicating that misinformation and desperation may have led to improper prescribing by physicians and patients resorting to ineffective drugs. Moreover, since the sale of these therapeutic drugs requires a prescription, poor regulation, and a lack of control within pharmacies likely contributed to such practices.
Collapse
Affiliation(s)
- Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador.
| | - Juan S Izquierdo-Condoy
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Carla Mora
- Medical Department, Quifatex, Quito, 170138, Ecuador
| | - Jorge Vasconez-Gonzalez
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Raúl Fernandez-Naranjo
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| |
Collapse
|
10
|
Zhao J, Lu J, Zhao H, Yan Y, Dong H. In five wastewater treatment plants in Xinjiang, China: Removal processes for illicit drugs, their occurrence in receiving river waters, and ecological risk assessment. CHEMOSPHERE 2023; 339:139668. [PMID: 37517667 DOI: 10.1016/j.chemosphere.2023.139668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Residues of illicit drugs are frequently detected in wastewater, but data on their removal efficiency by wastewater treatment plants (WWTPs) and the ecological risks to the aquatic environment are lacking in this study. The research evaluates the residues, mass load, drug removal efficiency, and risk assessment of illicit drugs in WWTPs and aquatic environments (lakes) in Xinjiang, China. Initially, the concentration (incidence) and mass load of 10 selected illicit drugs were analyzed through wastewater analysis. The detected substances included methamphetamine (METH), morphine (MOR), 3,4-methylenedioxy methamphetamine (MDMA), methadone (MTD), cocaine (COC), benzoylecgonine (BE), ketamine (KET), and codeine (COD), with concentrations ranging from 0.11 ± 0.01 ng/L (methadone) to 48.26 ± 25.05 ng/L (morphine). Notably, morphine (59.74 ± 5.82 g/day) and methamphetamine (41.81 ± 4.91 g/day) contributed significantly to the WWTPs. Next, the drug removal efficiency by different sewage treatment processes was ranked as follows: Anaerobic-Oxic (A/O) combined Membrane Bio-Reactor (MBR) treatment process > Oxidation ditch treatment process > Anaerobic-Anoxic-Oxic (A2/O) treatment process > Anaerobic-Anoxic-Oxic combined Membrane Bio-Reactor treatment process. Finally, the research reviewed the concentration and toxicity assessments of these substances in the aquatic environment (lakes). The results indicated that Lake1 presented a medium risk level concerning the impact of illicit drugs on the aquatic environment, whereas the other lakes exhibited a low risk level. As a result, it is recommended to conduct long-term monitoring and source analysis of illicit drugs, specifically in Lake1, for further investigation. In conclusion, to enhance the understanding of the effects of illicit drugs on the environment, future research should expand the list of target analytes.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Haijun Zhao
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832003, China
| | - Yujun Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Hongyu Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
11
|
Boogaerts T, Quireyns M, De Loof H, Bertels X, Van Wichelen N, Pussig B, Saevels J, Lahousse L, Bonmariage P, Hamelinck W, Aertgeerts B, Covaci A, van Nuijs ALN. Do the lockdown-imposed changes in a wastewater treatment plant catchment's socio-demographics impact longitudinal temporal trends in psychoactive pharmaceutical use? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162342. [PMID: 36842581 DOI: 10.1016/j.scitotenv.2023.162342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) includes the analysis of human metabolic biomarkers of xenobiotics in influent wastewater. WBE complements existing drug utilization approaches and provides objective, spatio-temporal information on the consumption of pharmaceuticals in the general population. This approach was applied to 24-h composite influent wastewater samples from Leuven, Belgium. Daily samples were analysed from September 2019 to December 2019 (n = 76), and on three days of the week (Monday, Wednesday, Saturday) from January 2020 to April 2022 (n = 367). Sample analysis consisted of 96-well solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. Measured concentrations of 21 biomarkers for antidepressant and opioid use were converted to population-normalized mass loads (PNML) by considering the flow rate and catchment population. To capture population movements, mobile phone data was used. Amitriptyline, hydroxy-bupropion, norcitalopram, citalopram, normirtazapine, trazodone, O-desmethylvenlafaxine, codeine, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), methadone, morphine, O-desmethyltramadol, and tramadol were included in the temporal assessment since concentrations were above the lower limit of quantification. The PNML of most biomarkers increased (with 3-119 %) throughout the sampling period. The population disruption during the COVID-19 pandemic led to a major change in the socio-demographics of the catchment area, resulting in temporal differences in the PNML of the different biomarkers. As such, higher PNML were observed during the different lockdown phases, which were characterized by the outflow of university students and a decreasing commuting in and out the catchment area. The effects of the fluctuating socio-demographics of the catchment population were further evidenced by the different week-weekend pattern of PNMLs over the course of the sampling campaign. Mean parent/metabolite ratios (i.e., citalopram/norcitalopram, tramadol/O-desmethyltramadol, venlafaxine/O-desmethylvenlafaxine, and methadone/EDDP) remained relatively stable throughout the entire sampling campaign (RSD% below 25 % for all ratios, except for methadone/EDDP) and therefore were not affected by this population change.
Collapse
Affiliation(s)
- Tim Boogaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Maarten Quireyns
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hans De Loof
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Xander Bertels
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Natan Van Wichelen
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Bram Pussig
- Academic Center for General Practice, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Jan Saevels
- Association of Pharmacists in Belgium (APB), Rue Stevin 137, 1000 Brussels, Belgium
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Pauline Bonmariage
- Association of Pharmacists in Belgium (APB), Rue Stevin 137, 1000 Brussels, Belgium
| | - Wouter Hamelinck
- Association of Pharmacists in Belgium (APB), Rue Stevin 137, 1000 Brussels, Belgium
| | - Bert Aertgeerts
- Academic Center for General Practice, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | |
Collapse
|
12
|
Rachidi M, Hatem G, Hatem M, Zein S, Rachidi S, Awada S. Impact of the COVID-19 pandemic on the consumption patterns of psychotropic drugs and predictors of limited access to medication. THE JOURNAL OF MEDICINE ACCESS 2023; 7:27550834231163706. [PMID: 37051188 PMCID: PMC10086612 DOI: 10.1177/27550834231163706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
Background Despite the efforts of the health system to improve access to medications during the coronavirus disease of 2019 (COVID-19) pandemic, such as online consultations, encouraging generic prescriptions, and other measures to limit the storage of medication, psychotropic patients faced significant challenges in accessing their medications. Objectives This study aimed (1) to compare the consumption of psychotropics before and during the pandemic, (2) to assess the association between having difficulties finding the medications and the general characteristics of the patients, and (3) to assess the predictors of these difficulties. Design A case-control study was performed in which 128 patients (cases) were recruited during the pandemic (July-October 2021), and 256 patients (controls) using psychotropics before the pandemic were matched for age and sex. Methods Data were collected using a uniform survey given to patients using psychotropics and filled out at their time and place preferences. Results More patients used antipsychotics and anti-anxiety medications before the pandemic, while antidepressants were used more during the pandemic. Almost half of the patients reported facing difficulties finding their medications in both time frames. Before the pandemic, these difficulties were noted per increase in age and being employed and were less faced if patients had medical assistance or lived in the north of Lebanon. However, more patients reported having difficulties accessing their medication during the pandemic, with no significant differences. Conclusion The consumption of psychotropic drugs was higher among cases. All patients faced challenges in accessing their medication throughout the pandemic, while older and employed patients had more limitations before the pandemic. Further investigations exploring viable solutions are recommended in order to maintain sustainable access to treatment.
Collapse
Affiliation(s)
- Maya Rachidi
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon
| | - Georges Hatem
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon
- Faculty of Medicine, University of Porto, Porto, Portugal
- Georges Hatem, Faculty of medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Melissa Hatem
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Salam Zein
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon
| | - Samar Rachidi
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon
| | - Sanaa Awada
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon
| |
Collapse
|