1
|
Antonopoulou M, Tzamaria A, Pedrosa MFF, Ribeiro ARL, Silva AMT, Kaloudis T, Hiskia A, Vlastos D. Spirulina-based carbon materials as adsorbents for drinking water taste and odor control: Removal efficiency and assessment of cyto-genotoxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172227. [PMID: 38582104 DOI: 10.1016/j.scitotenv.2024.172227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The sensory quality of drinking water, and particularly its taste and odor (T&O) is a key determinant of consumer acceptability, as consumers evaluate water by their senses. Some of the conventional treatment processes to control compounds which impart unpleasant T&O have limitations because of their low efficiency and/or high costs. Therefore, there is a great need to develop an effective process for removing T&O compounds without secondary concerns. The primary objective of this study was to assess for the first time the effectiveness of spirulina-based carbon materials in removing geosmin (GSM) and 2-methylisoborneol (2-MIB) from water, two commonly occurring natural T&O compounds. The efficiency of the materials to remove environmentally relevant concentrations of GSM and 2-MIB (ng L-1) from ultrapure and raw water was investigated using a sensitive headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC/MS) method. Moreover, the genotoxic and cytotoxic effects of the spirulina-based materials were assessed for the first time to evaluate their safety and their potential in the treatment of water for human consumption. Based on the results, spirulina-based materials were found to be promising for drinking water treatment applications, as they did not exert geno-cytotoxic effects on human cells, while presenting high efficiency in removing GSM and 2-MIB from water.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Marta F F Pedrosa
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana R L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Triantafyllos Kaloudis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Patr. Gregoriou E' & 27 Neapoleos Str, 15341 Agia Paraskevi, Athens, Greece
| | - Anastasia Hiskia
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Patr. Gregoriou E' & 27 Neapoleos Str, 15341 Agia Paraskevi, Athens, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| |
Collapse
|
2
|
Spyrou A, Vlastos D, Antonopoulou M. Evidence on the genotoxic and ecotoxic effects of PFOA, PFOS and their mixture on human lymphocytes and bacteria. ENVIRONMENTAL RESEARCH 2024; 248:118298. [PMID: 38280522 DOI: 10.1016/j.envres.2024.118298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Considering that the PFOA and PFOS are widely spread chemicals with harmful effects in human and environmental health as well as the increasing interest of the scientific community in the implications that might present especially when they co-exist, this study aims to assess their harmful impacts, both individually and as a mixture on human lymphocytes and aquatic microorganisms. The cytokinesis-block micronucleus (CBMN) assay was used to examine their potential for cytotoxicity and genotoxicity towards human cells, and Microtox assay using Aliivibrio fischeri assay was used to estimate the environmental risk. Regarding the human lymphocytes, the tested concentrations ranged between 250 and 1000 μg L-1, for all cases. PFOA increased slightly the frequency of micronuclei (MN) but without statistical significance. In the case of PFOS, our results showed a dose-dependent increase in the frequency of micronuclei which showed a statistically significant difference (p < 0.001) at 1000 μg L-1, which is the highest studied concentration. Regarding the CBPI index, statistically significant (p < 0.05, p < 0.01, and p < 0.001 respectively) differences were observed at all studied concentrations of PFOS, compared to the control. The mixture was found to be more cytotoxic and genotoxic than the individual tested compounds, causing a higher decrease at the CBPI index even in lower concentrations and increase at the MN frequencies. Aliivibrio fischeri was exposed to various concentrations in the range of 0.5 μg L-1- 20 mg L-1, for 5 and 15 min and significant increase in the inhibition percentage at the highest tested concentration of their mixture after 15 min was observed.
Collapse
Affiliation(s)
- Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131, Agrinio, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, 26500, Patras, Rio, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131, Agrinio, Greece.
| |
Collapse
|
3
|
Photocatalytic Degradation of Pharmaceutical Amisulpride Using g-C3N4 Catalyst and UV-A Irradiation. Catalysts 2023. [DOI: 10.3390/catal13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the present study, the photocatalytic degradation of amisulpride using g-C3N4 catalyst under UV-A irradiation was investigated. The photocatalytic process was evaluated in terms of its effectiveness to remove amisulpride from ultrapure and real municipal wastewater. High removal percentages were achieved in both aqueous matrices. However, a slower degradation rate was observed using wastewater as matrix that could be attributed to its complex chemical composition. The transformation products (TPs) were identified with liquid chromatography–mass spectrometry (LC–MS) in both ultrapure and real municipal wastewater. Based on the identified TPs, the photocatalytic degradation pathways of amisulpride are proposed which include mainly oxidation, dealkylation, and cleavage of the methoxy group. Moreover, the contribution of reactive species to the degradation mechanism was studied using well-documented scavengers, and the significant role of h+ and O2•− in the reaction mechanism was proved. The evolution of ecotoxicity was also estimated using microalgae Chlorococcum sp. and Dunaliella tertiolecta. Low toxicity was observed during the overall process without the formation of toxic TPs when ultrapure water was used as matrix. In the case of real municipal wastewater, an increased toxicity was observed at the beginning of the process which is attributed to the composition of the matrix. The application of heterogeneous photocatalysis reduced the toxicity, and almost complete detoxification was achieved at the end of the process. Our results are in accordance with literature data that reported that heterogeneous photocatalysis is effective for the removal of amisulpride from aqueous matrices.
Collapse
|
4
|
Antonopoulou M, Vlastos D, Dormousoglou M, Bouras S, Varela-Athanasatou M, Bekakou IE. Genotoxic and Toxic Effects of The Flame Retardant Tris(Chloropropyl) Phosphate (TCPP) in Human Lymphocytes, Microalgae and Bacteria. TOXICS 2022; 10:736. [PMID: 36548569 PMCID: PMC9782401 DOI: 10.3390/toxics10120736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Tris(chloropropyl) phosphate (TCPP) is a characteristic and widely used organophosphorus flame retardant. TCPP is comprised of four isomers and the most abundant is tris(1-chloro-2-propyl) phosphate. TCPP can be released into the environment, with potential impacts on living organisms and humans due to its extensive industrial use. Aiming to assess the potential risks of TCPP on human health and the environment, its toxic and genotoxic effects-using organisms from different trophic levels, i.e., bacteria, green microalgae, and human cells-were investigated. TCPP exposure at nominal concentrations of 10, 20, 30 and 40 μg mL-1 was studied to identify the potential risk of inducing genotoxic effects in cultured human lymphocytes. Treatment with 30 and 40 μg mL-1 of TCPP induced marginally significant micronuclei (MN) frequencies as well as cytotoxic effects. Freshwater microalgae species treated with TCPP (0.5, 1, 10, 20 and 50 μg L-1) showed different growth rates over time. All the tested microalgae species were adversely affected after exposure to TCPP during the first 24 h. However, differences among the microalgae species' sensitivities were observed. In the case of the freshwater species, the most sensitive was found to be Chlorococcum sp. The marine algal species Dunaliella tertiolecta and Tisochrysis lutea were significantly affected after exposure to TCPP. The effects of TCPP on Aliivibrio fischeri that were observed can classify this flame retardant as a "harmful" compound. Our results suggest a potential risk to aquatic organisms and humans from the wide utilization of TCPP and its consequent release into the environment. These results highlight that further research should be conducted to investigate the effects of TCPP individually and in combination with other organophosphorus flame retardants in various organisms. In addition, the concern induced by TCPP points out that measures to control the introduction of TCPP into the environment should be taken.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | - Margarita Dormousoglou
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| | - Spyridon Bouras
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| | - Maria Varela-Athanasatou
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| | - Irene-Eleni Bekakou
- Department of Sustainable Agriculture (Former Department of Environmental Engineering), University of Patras, 30100 Agrinio, Greece
| |
Collapse
|