1
|
Ariana A, Cozzarelli I, Danforth C, McDevitt B, Rosofsky A, Vorhees D. Pathways for Potential Exposure to Onshore Oil and Gas Wastewater: What We Need to Know to Protect Human Health. GEOHEALTH 2025; 9:e2024GH001263. [PMID: 40182626 PMCID: PMC11966568 DOI: 10.1029/2024gh001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Produced water is a chemically complex waste stream generated during oil and gas development. Roughly four trillion liters were generated onshore in the United States in 2021 (ALL Consulting, 2022, https://www.gwpc.org/wp-content/uploads/2021/09/2021_Produced_Water_Volumes.pdf). Efforts are underway to expand historic uses of produced water to offset freshwater needs in water-stressed regions, avoid induced seismic activity associated with its disposal, and extract commodities. Understanding the potential exposures from current and proposed produced water uses and management practices can help to inform health-protective practices. This review summarizes what is known about potential human exposure to produced water from onshore oil and gas development in the United States. We synthesize 236 publications to create a conceptual model of potential human exposure that illustrates the current state of scientific inquiry and knowledge. Exposure to produced water can occur following its release to the environment through spills or leaks during its handling and management. Exposure can also arise from authorized releases, including permitted discharges to surface water, crop irrigation, and road treatment. Knowledge gaps include understanding the variable composition and toxicity of produced water released to the environment, the performance of treatment methods, migration pathways through the environment that can result in human exposure, and the significance of the exposures for human and ecosystem health. Reducing these uncertainties may help in realizing the benefits of produced water use while simultaneously protecting human health.
Collapse
Affiliation(s)
| | | | | | - Bonnie McDevitt
- Geology, Energy & Minerals Science CenterU.S. Geological SurveyRestonVAUSA
| | | | | |
Collapse
|
2
|
de Vera GAD, Caldiero L, Conte G, Plata DL. Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:412-422. [PMID: 39808077 DOI: 10.1039/d4em00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (e.g., monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N-methyldiethanolamine (MDEA), and N,N-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (i.e., one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability. The method was evaluated in produced water samples from Italy (NaCl salinity from 8110-18 100 mg L-1; diesel range organic compounds ranging from 5.1-7.9 mg L-1). After correcting for matrix effects, ethanolamines in produced water samples were quantified. The first batch of samples (March 2019) had 37-646 μg L-1 total ethanolamines. The second batch of samples (September 2019) had greater ethanolamine content of 77-3976 μg L-1 which was attributed to a reduced water cut during oil production, enhancing the proportionate abundance of these compounds in the aqueous phase. In all samples, DEA and MEA were the dominant ethanolamine species. Possible sources (e.g., corrosion inhibitor and biotransformation) and natural attenuation potential during storage (e.g., at different temperatures, acidification, and addition of sodium azide) were investigated. The developed analytical method enables further investigation of the fate of low molecular weight organic additives in oil and gas development and provides an enhanced ability to evaluate risks associated with chemical release to the environment.
Collapse
Affiliation(s)
- Glen Andrew D de Vera
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| | - Loredana Caldiero
- Eni SpA - Upstream Technical Services, Via F. Maritano, 26 - 20097 San Donato M.se, MI, Italy
| | - Giovanni Conte
- Eni SpA - Upstream Technical Services, Via F. Maritano, 26 - 20097 San Donato M.se, MI, Italy
| | - Desirée L Plata
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
3
|
Faruque MO, Mohammed T, Hossain MM, Razzak SA. Bioremediation of dissolved organic compounds in produced water from oil and gas operations using Chlorella sorokiniana: a sustainable approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:72. [PMID: 39694994 DOI: 10.1007/s10661-024-13543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
The sustainable treatment of petroleum-derived produced water (PW), a significant byproduct of oil and gas extraction, presents a persistent problem due to the presence of organic pollutants. This study examines the potential of the microalga Chlorella sorokiniana (C. sorokiniana) for the bioremediation of dissolved organic pollutants in PW. The primary objectives were to evaluate the efficacy of C. sorokiniana in decreasing the levels of dissolved organic contaminants while examining its growth and survival in such a complex environment. The cultivation of C. sorokiniana in photobioreactors containing synthetic produced water (SPW), supplemented with synthetic municipal wastewater (SMW) to provide essential nutrients, was carried out under controlled laboratory conditions. Parameters such as biomass growth, lipid content, and the microalgae's capacity to metabolize organic compounds are monitored over time. The results indicate that, except for 100% PW, maximum biomass output after 16 days ranged from 733 to 1077 mg/L. Total organic carbon (TOC) removal efficiency increased with rising PW concentrations, peaking at 85% for 50% PW. The cultivation period resulted in substantial nitrogen and phosphorus removal from the enriched PW media, achieving a maximum nitrogen removal of 87% at 10% PW and a phosphorus removal of 98.5% at 40% PW. Lipid content ranged from 12 to 16% during this period. In conclusion, C. sorokiniana offers a promising and sustainable approach for the bioremediation of dissolved organic compounds in PW. This method provides an eco-friendly option to reduce the ecological impact associated with petroleum-derived PW.
Collapse
Affiliation(s)
- Mohammed Omar Faruque
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Tariq Mohammed
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
- Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Shaikh Abdur Razzak
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
- Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
| |
Collapse
|
4
|
Jubb AM, Shelton JL, McDevitt B, Amundson KK, Herzberg AS, Chenault J, Masterson AL, Varonka MS, Jolly G, DeVera CA, Barnhart E, Wilkins MJ, Blondes MS. Produced water geochemistry from hydraulically stimulated Niobrara Formation petroleum wells: Origin of salinity and temporal perspectives on treatment and reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176845. [PMID: 39426534 DOI: 10.1016/j.scitotenv.2024.176845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Produced water (i.e., a mixture of returned injection fluids and geologic formation brines) represents the largest volumetric waste stream associated with petroleum production in the United States. As such, produced water has been the focus of intense study with emphasis on understanding the geologic origin of the fluids, environmental impacts of unintended or intentional release, disposal concerns, and their commodity (e.g., lithium) potential. However, produced water geochemistry from many active petroleum plays remain poorly understood leading to knowledge gaps associated with the origin of brine salinity and parameters (e.g., radium levels) that can impact treatment, disposal, and possible reuse. Here we evaluate the major ion geochemistry, radium concentrations, and stable water isotope composition of ~120 produced water samples collected from 17 producing unconventional petroleum wells in Weld County, Colorado from the Late Cretaceous Niobrara Formation. This sample set encompasses eight produced water time series from four new wells across production days 0 to ~365 and from four established wells across production days ~1000 to ~1700. Additionally, produced water from nine other established Niobrara Formation wells were sampled at discrete time points ranging from day 458 to day 2256, as well as hydraulic fracturing input fluids. These results expand the available Niobrara Formation produced water geochemical data, previously limited to a few wells sampled within the first year of production, allowing for the heterogeneity of major ions and radium to be evaluated. Specific highlights include: (i) observations that boron and bromide concentrations are higher in produced waters from new wells compared to older, established wells, suggesting the role of input fluids contributing to fluid geochemistry; and (ii) barium and radium concentrations vary between the producing benches of the Niobrara Formation with implications for treating radiological hazards in produced waters from this formation. Furthermore, we explore the geochemical relationships between major ion ratios and stable water isotope composition to understand the origin of salinity in Niobrara Formation brines from the Denver-Julesburg Basin. These findings are discussed with perspective toward potential treatment and reuse of Niobrara produced water prior to disposal.
Collapse
Affiliation(s)
- Aaron M Jubb
- U.S. Geological Survey, Reston, Virginia 20192, USA.
| | - Jenna L Shelton
- U.S. Geological Survey, National Cooperative Geologic Mapping Program, Indianapolis, Indiana 46202, USA
| | | | - Kaela K Amundson
- Colorado State University, Department of Soil & Crop Sciences, Fort Collins, Colorado 80523, USA
| | | | | | | | | | - Glenn Jolly
- U.S. Geological Survey, Reston, Virginia 20192, USA
| | | | | | - Michael J Wilkins
- Colorado State University, Department of Soil & Crop Sciences, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
5
|
Feng H, Lai Y, Wang X, Zhang Z, Chen S. Greater environmental risk of shale gas produced water from lacustrine than marine sources in Fuling shale gas field, China: Insights from inorganic compounds, dissolved organic matter, and halogenated organic compounds. WATER RESEARCH 2024; 268:122719. [PMID: 39527906 DOI: 10.1016/j.watres.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Lacustrine shale gas represents a promising frontier in the future development of shale gas resources. However, research on the characterization of lacustrine shale gas produced water (SGPW) remains scarce. In this study, we characterized the geochemical properties of both marine and lacustrine SGPW (MSGPW and LSGPW) and assessed their dissolved organic matter (DOM) components using fluorescence EEM spectroscopy. Additionally, we employed Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to analyze halogenated organic compounds (HOCs) and non-HOCs in SGPW, as well as their transformations during storage in open impoundments. Pollutants in LSGPW generally had higher concentrations and greater fluctuations compared to those in MSGPW. Our findings from EEM spectroscopy and FT-ICR MS revealed that phenolic compounds may be important components of DOM in all SGPW. Moreover, the number of detected unique molecules in LSGPW was greater than in MSGPW. CHO or CHOS compounds dominated in non-HOCs, with LSGPW exhibiting generally higher DBE, modified aromaticity index (AImod), nominal oxidation state of carbon (NOSC), double bond equivalent minus oxygen per carbon ((DBE-O)/C) values, and lower H/C values compared to MSGPW, while unsaturated aliphatic compounds typically dominated in HOCs. Furthermore, we employed 37 transformation reactions that might occur during SGPW storage and found that oxygen addition and dealkyl group reactions were predominant, with these two types of reactions occurring more frequently in LSGPW than in MSGPW. LSGPW exhibited higher toxicity compared to MSGPW, with toxicity positively correlated with the concentrations of inorganic salts and organic substances with higher AImod, NOSC, and (DBE-O)/C. These findings contribute to a more comprehensive understanding of LSGPW, enabling the design and implementation of more rational disposal measures to effectively mitigate its potential environmental risks.
Collapse
Affiliation(s)
- Hualiang Feng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Yani Lai
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojun Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zhaoji Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
6
|
McDevitt B, Tasker TL, Coyte R, Blondes MS, Stewart BW, Capo RC, Hakala JA, Vengosh A, Burgos WD, Warner NR. Utica/Point Pleasant brine isotopic compositions (δ 7Li, δ 11B, δ 138Ba) elucidate mechanisms of lithium enrichment in the Appalachian Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174588. [PMID: 38981550 DOI: 10.1016/j.scitotenv.2024.174588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Global Li production will require a ∼500 % increase to meet 2050 projected energy storage demands. One potential source is oil and gas wastewater (i.e., produced water or brine), which naturally has high total dissolved solids (TDS) concentrations, that can also be enriched in Li (>100 mg/L). Understanding the sources and mechanisms responsible for high naturally-occurring Li concentrations can aid in efficient targeting of these brines. The isotopic composition (δ7Li, δ11B, δ138Ba) of produced water and core samples from the Utica Shale and Point Pleasant Formation (UPP) in the Appalachian Basin, USA indicates that depth-dependent thermal maturity and water-rock interaction, including diagenetic clay mineral transformations, likely control Li concentrations. A survey of Li content in produced waters throughout the USA indicates that Appalachian Basin brines from the Marcellus Shale to the UPP have the potential for economic resource recovery.
Collapse
Affiliation(s)
- Bonnie McDevitt
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States of America.
| | - Travis L Tasker
- Saint Francis University, Department of Environmental Engineering, Loretto, PA, United States of America
| | - Rachel Coyte
- New Mexico Institute of Mining and Technology, Earth and Environmental Science Department, Socorro, NM, United States of America
| | - Madalyn S Blondes
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States of America
| | - Brian W Stewart
- University of Pittsburgh, Department of Geology and Environmental Science, Pittsburgh, PA, United States of America
| | - Rosemary C Capo
- University of Pittsburgh, Department of Geology and Environmental Science, Pittsburgh, PA, United States of America
| | - J Alexandra Hakala
- Department of Energy, National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States of America
| | - Avner Vengosh
- Duke University, Nicholas School of the Environment, Durham, NC, United States of America
| | - William D Burgos
- The Pennsylvania State University, Department of Civil and Environmental Engineering, State College, PA, United States of America
| | - Nathaniel R Warner
- The Pennsylvania State University, Department of Civil and Environmental Engineering, State College, PA, United States of America
| |
Collapse
|
7
|
Kashani M, Engle MA, Kent DB, Gregston T, Cozzarelli IM, Mumford AC, Varonka MS, Harris CR, Akob DM. Illegal dumping of oil and gas wastewater alters arid soil microbial communities. Appl Environ Microbiol 2024; 90:e0149023. [PMID: 38294246 PMCID: PMC10880632 DOI: 10.1128/aem.01490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024] Open
Abstract
The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly (P < 0.01) differed between dump and control zones, with soils from dump areas having significantly (P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils.IMPORTANCEThe long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.
Collapse
Affiliation(s)
- Mitra Kashani
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Mark A. Engle
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas B. Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, California, USA
| | | | - Isabelle M. Cozzarelli
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Adam C. Mumford
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, Maryland, USA
| | - Matthew S. Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Cassandra R. Harris
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| |
Collapse
|
8
|
Geng T, Wang Y, Yin XL, Chen W, Gu HW. A Comprehensive Review on the Excitation-Emission Matrix Fluorescence Spectroscopic Characterization of Petroleum-Containing Substances: Principles, Methods, and Applications. Crit Rev Anal Chem 2023; 54:2827-2849. [PMID: 37155146 DOI: 10.1080/10408347.2023.2205500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Petroleum-containing substance (PCS) is a general term used for petroleum and its derivatives. A comprehensive characterization of PCSs is crucial for resource exploitation, economic development and environmental protection. Fluorescence spectroscopy, especially excitation-emission matrix fluorescence (EEMF) spectroscopy, has been proved to be a powerful tool to characterize PCSs since its remarkable sensitivity, selectivity, simplicity and high efficiency. However, there is a lack of systematic review focusing on this field in the literature. This paper reviews the fundamental principles and measurements of EEMF for characterizing PCSs, and makes a systematic introduction to various information mining methods including basic peak information extraction, spectral parameterization and some commonly used chemometric methods. In addition, recent advances in applying EEMF to characterize PCSs during the whole life-cycle process of petroleum are also revisited. Furthermore, the current limitations of EEMF in the measurement and characterization of PCSs are discussed and corresponding solutions are provided. For promoting the future development of this field, the urgent need to build a relatively complete EEMF fingerprint library to trace PCSs, not only pollutants but also crude oil and petroleum products, is proposed. Finally, the extensions of EEMF to high-dimensional chemometrics and deep learning are prospected, with the expectation of solving more complex systems and problems.
Collapse
Affiliation(s)
- Tao Geng
- Hubei Engineering Research Center for Clean Production and Pollutant Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Yan Wang
- Hubei Engineering Research Center for Clean Production and Pollutant Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Xiao-Li Yin
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wu Chen
- Hubei Engineering Research Center for Clean Production and Pollutant Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, China
| | - Hui-Wen Gu
- Hubei Engineering Research Center for Clean Production and Pollutant Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| |
Collapse
|