1
|
Patiño-Aroca M, Hernández-Paredes T, Panchana-López C, Borge R. Source apportionment of ambient pollution levels in Guayaquil, Ecuador. Heliyon 2024; 10:e31613. [PMID: 38845902 PMCID: PMC11154214 DOI: 10.1016/j.heliyon.2024.e31613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
In this study, the relative contributions of main emission sources to the typical ambient concentrations of key pollutants, such as sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter (PM10 and PM2.5) in Guayaquil, Ecuador, were investigated. A previous urban emissions inventory for mobile sources was expanded to include other transportation means and main industrial activities using the EMEP/EEA methodology to achieve this objective. The WRF/CALMET/CALPUFF modeling system was used to simulate the annual spatiotemporal distribution of air pollution in the city. According to the model, NO2 concentrations exceed the yearly value and 1-h Ecuadorian standards (40 and 200 μg/m3) in 1 % and 6 % of the cells of the modeling domain, respectively. These hotspots related to local sources were located in the northwest center of the city. The contributions of the manufacturing sector, thermal power plants, ports, airports, and road traffic were assessed individually, and the results indicated that air quality in the study area was strongly dominated by road traffic. The contributions of NO2, CO, PM10, and PM2.5 at the city level reached 76 %, 96 %, 90 %, and 92 % of the annual mean, respectively. In the case of SO2, the manufacturing sector made the most significant contribution (75 %), followed by thermal power plants (16 %). Furthermore, an analysis at 14 specific locations across Guayaquil identified spatial variations that may support the design and development of an air quality monitoring network for the city.
Collapse
Affiliation(s)
- Mario Patiño-Aroca
- Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
- Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (UPM), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Tomás Hernández-Paredes
- Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
- Universidad Agraria del Ecuador, Facultad de Ciencias Agrarias “Dr. Jacobo Bucaram Ortiz”, Av. 25 de Julio y Pío Jaramillo, P.O. Box 09-04-100, Guayaquil, Ecuador
| | - Carlos Panchana-López
- Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Rafael Borge
- Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid (UPM), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
2
|
Krecl P, Johansson C, Norman M, Silvergren S, Burman L, Mollinedo EM, Targino AC. Long-term trends of black carbon and particle number concentrations and their vehicle emission factors in Stockholm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123734. [PMID: 38458523 DOI: 10.1016/j.envpol.2024.123734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Black carbon (BC) and particle number (PN) concentrations are usually high in cities due to traffic emissions. European mitigation policies, including Euro emission standards, have been implemented to curb these emissions. We analyzed BC and PN (particle diameter Dp > 4 nm) concentrations in Stockholm spanning the years 2013-2019 (BC) and 2009-2019 (PN) measured at street canyon and rooftop sites to assess the effectiveness of the implemented policies. Combining these data with inverse dispersion modeling, we estimated BC and PN emission factors (EFBC and EFPN) for the mixed fleet, reflecting real-world driving conditions. The pollutants showed decreasing trends at both sites, but PN concentrations remained high at the canyon site considering the World Health Organization (WHO) recommendations. BC concentrations declined more rapidly than PN concentrations, showing a -9.4% and -4.9% annual decrease at the canyon and -7.2% and -0.5% at the rooftop site in the years 2013-2019. The EFBC and EFPN trends showed that the mitigation strategies for reducing particulate emissions for on-road vehicles were successful over the study period. However, the introduction of biofuels in the vehicle fleet -ethanol and later rapeseed methyl ester (RME)- increased the concentrations of particles with Dp < 10 nm before the adoption of particulate filters in the exhausts. Stricter Euro emission regulations, especially with diesel particulate filters (DPF) in Euro 5, 6, and VI vehicles, led to 66% decrease in EFBC and 55% in EFPN. Real-world EFBC surpassed HBEFA (Handbook Emission Factors for Road Transport) database values by 2.4-4.8 times; however, direct comparisons between real-world and HBEFA EFPN are difficult due to differences in lower cut-off sizes and measurement techniques. Our results underscore the necessity for revising the HBEFA database, updating laboratory testing methods and portable emission measuring systems (PEMS) measurements to account for liquid condensate contributions to PN measurements.
Collapse
Affiliation(s)
- Patricia Krecl
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, 86036-370, Brazil.
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, Stockholm, 10691, Sweden; Stockholm Environment and Health Administration, SLB analys, Stockholm, 10420, Sweden
| | - Michael Norman
- Stockholm Environment and Health Administration, SLB analys, Stockholm, 10420, Sweden
| | - Sanna Silvergren
- Stockholm Environment and Health Administration, SLB analys, Stockholm, 10420, Sweden
| | - Lars Burman
- Stockholm Environment and Health Administration, SLB analys, Stockholm, 10420, Sweden
| | - Eva Maria Mollinedo
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, 86036-370, Brazil
| | - Admir Créso Targino
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, 86036-370, Brazil
| |
Collapse
|
3
|
Targino AC, Krecl P, Oukawa GY, Mollinedo EM. A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. J Environ Sci (China) 2024; 136:498-511. [PMID: 37923459 DOI: 10.1016/j.jes.2022.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 11/07/2023]
Abstract
Emissions from biomass burning challenge efforts to curb air pollution in cities downwind of fire-prone regions, as they contribute large amounts of brown carbon (BrC) and black carbon (BC) particles. We investigated the patterns of BrC and BC concentrations using Aethalometer data (at λ = 370 and 880 nm, respectively) spanning four years at a site impacted by the outflow of smoke. The data required to be post processed for the shadowing effect since, without correction, concentrations would be between 29% and 35% underestimated. The BrC concentrations were consistently higher than the BC concentrations, indicating the prevalence of aerosols from biomass burning. The results were supported by the Ångström coefficient (Å370/880), with values predominantly larger than 1 (mean ± standard deviation: 1.25 ± 0.31). Å370/880 values below 1 were more prevalent during the wet season, which suggests a contribution from fossil fuel combustion. We observed sharp BrC and BC seasonal signals, with mean minimum concentrations of 0.40 µg/m3 and 0.36 µg/m3, respectively, in the wet season, and mean maximum concentrations of 2.05 µg/m3 and 1.53 µg/m3 in the dry season. The largest concentrations were observed when northerly air masses moved over regions with a high density of fire spots. Local burning of residential solid waste and industrial combustion caused extreme BrC and BC concentrations under favourable wind directions. Although neither pollutant is included in any ambient air quality standards, our results suggest that transboundary smoke may hamper efforts to meet the World Health Organization guidelines for fine particles.
Collapse
Affiliation(s)
- Admir Créso Targino
- Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, Londrina, PR 86036-370, Brazil.
| | - Patricia Krecl
- Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, Londrina, PR 86036-370, Brazil
| | - Gabriel Yoshikazu Oukawa
- Department of Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, Londrina, PR 86036-370, Brazil
| | - Eva Maria Mollinedo
- Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, Londrina, PR 86036-370, Brazil
| |
Collapse
|
4
|
Targino AC, Moreno FL, Krecl P, Cardoso JV. Significant differences in black and brown carbon concentrations at urban and suburban sites. Heliyon 2023; 9:e18418. [PMID: 37520949 PMCID: PMC10374922 DOI: 10.1016/j.heliyon.2023.e18418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Light-absorbing carbonaceous particles (LAC) may cause and/or exacerbate non-communicable diseases, interfere with the Earth's radiative balance, darken urban buildings and impair vistas. In this study, we explored the temporal behaviour of LAC concentrations measured at wavelengths of 370 nm (brown carbon, BrC) and 880 nm (black carbon, BC) at two sites of a mid-sized city in Brazil. We observed sharp changes in LAC concentrations at the city centre site in response to variations in traffic volume. The highest concentrations were observed when winds originated from both the city core and from the direction of the bus terminal. The suburban site exhibited a notably uniform diurnal pattern and consistently lower LAC concentrations throughout the day. Nevertheless, substantial increases during the evening led to mean BrC and BC concentrations (2.6 and 2.2 μg m-3, respectively) comparable to daytime peaks observed in the city centre (3 μg m-3 and 2.5 μg m-3). This phenomenon was attributed to the burning of residential waste and overgrown vegetation in nearby vacant lots. Moreover, the highest concentrations coincided with periods of low wind speeds, usually linked to non-buoyant plumes from point sources. BrC concentrations surpassed BC concentrations, even at the city centre site. Not only was the Ångström absorption exponent (Å370/880) larger at the suburban site compared to the city centre (95th percentiles of 1.73 and 1.38, respectively), but it also exhibited a wider span. Overall, the combined LAC and Å370/880 data indicated that i) biomass burning is a major source of LAC at the suburban site; ii) at the city centre, bare BC particles may become internally mixed with BrC from biomass or fossil fuel emissions and enhance absorption at lower wavelengths. The occurrence of LAC peaks outside the evening rush hours suggests that other sources but on-road vehicular emissions may contribute to the deterioration of the air quality in the urban core. Tackling air quality across the urban perimeter requires targeting other potential sources but traffic emissions.
Collapse
|
5
|
Wang C, Duan W, Cheng S, Zhang J. Multi-component emission characteristics and high-resolution emission inventory of non-road construction equipment (NRCE) in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162914. [PMID: 36933727 DOI: 10.1016/j.scitotenv.2023.162914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
With the continuous abatement of industries and vehicles in the past years in China, the comprehensive understanding and scientific control of non-road construction equipment (NRCE) may play an important role in alleviating PM2.5 and O3 pollution in the next stage. In this study, the emission rates of CO, HC, NOx, PM2.5, CO2 and the component profiles of HC and PM2.5 from 3 loaders, 8 excavators and 4 forklifts under different operating conditions were tested for a systematic representation of NRCE emission characteristics. With the fusion of field tests, construction land types and population distributions, the NRCE emission inventory with a 0.1° × 0.1° resolution in nationwide and with a 0.01° × 0.01° resolution in Beijing-Tianjin-Hebei region (BTH) were established. The sample testing results suggested prominent differences in instantaneous emission rates and the composition characteristics among different equipment and under different operating modes. Generally, for NRCE, the dominant components are OC and EC for PM2.5, and HC and olefin for OVOC. Especially, the proportion of olefins in idling mode is much higher than that in working mode. The measurement-based emission factors of various equipment exceeded the Stage III standard to varying degrees. The high-resolution emission inventory suggested that highly developed central and eastern areas, represented by BTH, showed the most prominent emissions in China. This study is a systematic representations of China's NRCE emissions, and the NRCE emission inventory establishment method with multiple data fusion has important methodological reference value for other emission sources.
Collapse
Affiliation(s)
- Chuanda Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Wenjiao Duan
- Key Laboratory of Beijing on Regional Air Pollution Control, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Shuiyuan Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Junfeng Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|