1
|
Jia L, Zhou Q, Wu W. Optimized Mn cycle enhanced synchronous removal of nitrate and antibiotics driven by manganese oxides/solid carbon composites: Microbiota assembly patterns and electron transport. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136875. [PMID: 39706025 DOI: 10.1016/j.jhazmat.2024.136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The reactive substance consisting manganese oxides (MnOx) and solid carbon have been reported to be effective in polishing secondary wastewater; however, the treatment characteristics and mechanism remains limited. In this study, MnOx/carbon (Mn-C) composites were applied in biofilters to evaluate simultaneous removal of nitrate and sulfamethoxazole (SMX), with the single carbon composites as control. Results showed that the effluent concentrations of NO3--N and SMX were below 2.87 mg L-1 and 7.97 μg L-1 under hydraulic retention time (HRT) of 6 h. The intermittent aeration optimized Mn cycle with treatment performance improved under lower HRT and Mn(II) accumulation decreased. Mn-C composites could reduce the emission of N2O, CO2 and CH4. The dominant genera gradually evolved from fermentation to glycogen aggregation, and from heterotrophic/sulfur autotrophic to heterotrophic denitrifiers by intracellular substance and manganese autotrophic/heterotrophic bacteria. Microbial network analysis indicated higher antagonism, lower modularity and shorter average path among microbes in Mn-C biofilters, which highlighted microbial differentiation and faster electron transfer. Improved functions of denitrification and Mn respiration, and the increasing genes encoding electron transfer chain, including NADH dehydrogenase, Cytc and ubiquinone, further elucidated the superiority of Mn-C composites. These results improved our understanding of Mn-C composites application in low-carbon wastewater treatment.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Engineering, School of Environmental and Resource Science, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qi Zhou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|
2
|
Jia L, Cheng X, Fang L, Huang X. Nitrogen removal in improved subsurface wastewater infiltration system: Mechanism, microbial indicators and the limitation of phosphorus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117456. [PMID: 36822044 DOI: 10.1016/j.jenvman.2023.117456] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To enhance the nitrogen removal capacity, scrap iron filings and Si-Al porous clay mineral material (PCMW) was used to improve a subsurface wastewater infiltration system (SWIS). The results showed TN and NH4+-N removal efficiencies of improved SWIS were 20.72% and 5.49% higher than those of the control SWIS, respectively. Based on the response of the removal performance, microbial community and function analysis of 16s rRNA amplicon sequencing results, the amending soil matrix substantially enriched the nitrogen removal bacteria (Rhizobiales_Incertae_Sedis and Gemmatimonadaceae), and significantly improved the activities of key enzymes (Hao, NasAB, NarGHI, NirK, NorBC, NirA and NirBD), particularly at co-occurrence zone of nitrification and denitrification (70-130 cm depth). The amending soil matrix not only extended the growth space of microbes, but also provided additional electrons and carbon sources for denitrifying bacteria by regulating the structure and function of the microbial community. In addition, amending soil matrix could enhance phosphate metabolism genes and phosphate solubilizing microbes in the denitrification zone by increasing the phosphorus source, thus strengthening nitrogen metabolism. Nitrospiraceae, Rhizobiales_Incertae_Sedis and Gemmatimonadaceae related to nitrogen removal and Bacillaceae with phosphate-solubilizing ability could be used as microbial indicators of nitrogen removal in SWISs. The reciprocal action of environmental on microbial characteristics exhibited microbial functional were related to DO, Fe2+, TOC, TP, TN, NH4+-N and NO3--N. Those could be used as physicochemical and biological indicators for application and monitoring of SWIS. In conclusion, this study provided a low-cost and efficient enhancement approach for the application of SWIS in decentralized domestic sewage treatment, and furnished theoretical support for subsequent applications.
Collapse
Affiliation(s)
- Liping Jia
- College of Chemistry and Environmental Science, Minnan Normal University, Zhangzhou, 363000, China
| | - Xuelin Cheng
- College of Chemistry and Environmental Science, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Xuguang Huang
- College of Chemistry and Environmental Science, Minnan Normal University, Zhangzhou, 363000, China.
| |
Collapse
|
3
|
Pensky J, Fisher AT, Gorski G, Schrad N, Bautista V, Saltikov C. Linking nitrate removal, carbon cycling, and mobilization of geogenic trace metals during infiltration for managed recharge. WATER RESEARCH 2023; 239:120045. [PMID: 37201373 DOI: 10.1016/j.watres.2023.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
We present results from a series of laboratory column studies investigating the impacts of infiltration dynamics and the addition of a soil-carbon amendment (wood mulch or almond shells) on water quality during infiltration for flood-managed aquifer recharge (flood-MAR). Recent studies suggest that nitrate removal could be enhanced during infiltration for MAR through the application of a wood chip permeable reactive barrier (PRB). However, less is understood about how other readily available carbon sources, such as almond shells, could be used as a PRB material, and how carbon amendments could impact other solutes, such as trace metals. Here we show that the presence of a carbon amendment increases nitrate removal relative to native soil, and that there is greater nitrate removal in association with longer fluid retention times (slower infiltration rates). Almond shells promoted more efficient nitrate removal than wood mulch or native soil, but also promoted the mobilization of geogenic trace metals (Mn, Fe, and As) during experiments. Almond shells in a PRB likely enhanced nitrate removal and trace metal cycling by releasing labile carbon, promoting reducing conditions, and providing habitat for microbial communities, the composition of which shifted in response. These results suggest that limiting the amount of bioavailable carbon released by a carbon-rich PRB may be preferred where geogenic trace metals are common in soils. Given the dual threats to groundwater supplies and quality worldwide, incorporating a suitable carbon source into the soil for managed infiltration projects could help to generate co-benefits and avoid undesirable results.
Collapse
Affiliation(s)
- Jennifer Pensky
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| | - Andrew T Fisher
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Galen Gorski
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nicole Schrad
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, United States
| | - Victor Bautista
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, United States
| |
Collapse
|
4
|
Schrad N, Pensky J, Gorski G, Beganskas S, Fisher AT, Saltikov C. Soil characteristics and redox properties of infiltrating water are determinants of microbial communities at managed aquifer recharge sites. FEMS Microbiol Ecol 2022; 98:6795929. [PMID: 36331034 DOI: 10.1093/femsec/fiac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, we conducted a meta-analysis of soil microbial communities at three, pilot-scale field sites simulating shallow infiltration for managed aquifer recharge (MAR). We evaluated shifts in microbial communities after infiltration across site location, through different soils, with and without carbon-rich amendments added to test plots. Our meta-analysis aims to enable more effective MAR basin design by identifying potentially important interactions between soil physical-geochemical parameters and microbial communities across several geographically separate MAR basins. We hypothesized infiltration and carbon amendments would lead to common changes in subsurface microbial communities at multiple field sites but instead found distinct differences. Sites with coarser (mainly sandy) soil had large changes in diversity and taxa abundance, while sites with finer soils had fewer significant changes in genera, despite having the greatest increase in nitrogen cycling. Below test plots amended with a carbon-rich permeable reactive barrier, we observed more nitrate removal and a decrease in genera capable of nitrification. Multivariate statistics determined that the soil texture (a proxy for numerous soil characteristics) was the main determinant of whether the microbial community composition changed because of infiltration. These results suggest that microbial communities in sandy soil with carbon-rich amendments are most impacted by infiltration. Soil composition is a critical parameter that links between microbial communities and nutrient cycling during infiltration and could influence the citing and operation of MAR to benefit water quality and supply.
Collapse
Affiliation(s)
- Nicole Schrad
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Jennifer Pensky
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Galen Gorski
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, United States.,Present Address: U.S. Geological Survey, Reston VA, 20192, United States
| | - Sarah Beganskas
- Water Resource Management, Delaware River Basin Commission, 25 Cosey Road, West Trenton, NJ, 08628, United States
| | - Andrew T Fisher
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| |
Collapse
|