1
|
Dong Y, Li J, Guo Z, Han L, Zhao J, Wu X, Chen X. Unveiling responses and mechanisms of spice crop chive exposure to three typical pesticides using metabolomics combined with transcriptomics, physiology and biochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176285. [PMID: 39288875 DOI: 10.1016/j.scitotenv.2024.176285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Pesticides are frequently used to control target pests in the production of spice crops such as chives (Allium ascalonicum). However, little information is available on the responses and underlying mechanisms of pesticide exposure in this crop. Our findings revealed that the uptake, transportation, and subcellular distribution of three typical pesticides-the fungicide pyraclostrobin (PAL), insecticide acetamiprid (ATP), and herbicide pendimethalin (PND) in chives, as well as their physiological, biochemical, metabolic, and transcriptomic responses-were dependent on pesticide properties, especially hydrophobicity. The distribution of PAL and PND in chives decreased in the order root > stem > leaf, but the distribution order of ATP was the opposite. The proportion of PAL and PND in the solid phase of the root cells gradually increased, but ATP mainly existed in the cell-soluble component, indicating that the latter had an upward translocation ability and thus mainly accumulated in the leaves. Malondialdehyde levels in chive leaves were not significantly affected by exposure to these pesticides; however, the activities of superoxide dismutase (SOD) and catalase (CAT) in chive leaves increased significantly. Moreover, these pesticides exhibited critical differences in chive responses through the interaction of metabolites and regulation of differentially expressed genes. PAL dramatically influenced five carbohydrate metabolic pathways (34.35 %), disturbing the starch-to-sucrose balance. ATP strongly affected five amino acid (AC) metabolic pathways (33.38 %), enhancing four free amino acid levels. PND notably affected eight fatty acid (FA) metabolic pathways (25.38 %), increasing two unsaturated and decreasing one saturated FA. Simultaneously, PND, ATP, and PND accumulated in the chives could be detoxified through metabolic pathways mediated by cytochrome P450 (P450) and glycosyltransferase (GT)/glutathione S-transferase (GST), producing phase I (7, 4, and 5) and II (11, 13, and 10) metabolites, respectively. This study provides important molecular insights into the responses and underlying mechanisms of spice crop exposure to pesticides.
Collapse
Affiliation(s)
- Yibo Dong
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiaohong Li
- Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China
| | - Zhenxiang Guo
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lei Han
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Zhao
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaomao Wu
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China; Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Xiangsheng Chen
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Su X, Liu X, Li C, Zhang Y. 24-epibrassinolide as a multidimensional regulator of rice (Oryza sativa) physiological and molecular responses under isoproturon stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116575. [PMID: 38917591 DOI: 10.1016/j.ecoenv.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Brassinosteroids (BRs) can regulate various processes in plant development and defense against environmental stress. In this study, the contribution of BRs in the degradation of isoproturon (IPU) in rice has been established. IPU has a significant effect on rice growth, chlorophyll content, and membrane permeability. When treated with 1.0 μmol/L 24-epibrassinolide (EBR), a BR analogue, the associated symptoms of rice poisoning were alleviated as the IPU levels in the rice and growth media were decreased. In the presence of EBR, the activities of several IPU-related detoxification enzymes were enhanced to cope with the stress due to IPU. An RNA-sequencing (RNA-Seq) has been performed to determine the variation of transcriptomes and metabolic mechanisms in rice treated with EBR, IPU, or IPU+EBR. Some of the differentially expressed genes (DEGs) were Phase I-III reaction components of plants, such as cytochrome P450 (CYP450), glutathione S-transferase (GST), glycosyltransferases (GTs), and the ATP-binding cassette transporter (ABC transporter). The expression of some signal transduction genes was significantly up-regulated. The relative content of low-toxicity IPU metabolites increased due to the presence of EBR as determined by UPLC/Q-TOF-MS/MS. The IPU metabolic pathways include enzyme-catalyzed demethylation, hydroxylation, hydrolysis, glycosylation, and amino acid conjugation processes. The results suggest that EBR plays a key role in the degradation and detoxification of IPU. This study has provided evidence that BRs regulate the metabolism and detoxification of IPU in rice, and offers a new approach to ensuring cleaner crops by eliminating pesticide residues in the environment.
Collapse
Affiliation(s)
- Xiangning Su
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protecftion of Guangdong Province, Guangzhou 510640, China.
| | - Xuesong Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chuanying Li
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protecftion of Guangdong Province, Guangzhou 510640, China
| | - Yuping Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protecftion of Guangdong Province, Guangzhou 510640, China.
| |
Collapse
|
3
|
Su X, Li CY, Liu XS, Zhang YP. The role of OsBZR4 as a brassinosteroid-signaling component in mediating atrazine and isoproturon degradation in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134625. [PMID: 38759408 DOI: 10.1016/j.jhazmat.2024.134625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Development of a biotechnological system for rapid degradation of pesticides is important to mitigate the environmental, food security, and health risks that they pose. Degradation of atrazine (ATZ) and isoproturon (IPU) in rice crops promoted by the brassinosteroid (BR) signaling component BRASSINAZOLE RESISTANT4 (OsBZR4) is explored. OsBZR4 is localized in the plasma membrane and nucleus, and is strongly induced by ATZ and IPU exposure. Transgenic rice OsBZR4-overexpression (OE) significantly enhances resistance to ATZ and IPU toxicity, improving growth, and reducing ATZ and IPU accumulation (particularly in grains) in rice crops. Genetic destruction of OsBZR4 (CRISPR/Cas9) increases rice sensitivity and leads to increased accumulation of ATZ and IPU. OE plants promote phase I, II, and III metabolic reactions, and expression of corresponding pesticide degradation genes under ATZ and IPU stress. UPLC-Q-TOF-MS/MS analysis reveals increased relative contents of ATZ and IPU metabolites and conjugates in OE plants, suggesting an increased OsBZR4 expression and consequent detoxification of ATZ and IPU in rice and the environment. The role of OsBZR4 in pesticide degradation is revealed, and its potential application in enhancing plant resistance to pesticides, and facilitating the breakdown of pesticides in rice and the environment, is discussed.
Collapse
Affiliation(s)
- Xiangning Su
- Research Institute of Plant Protection, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou 510640, China.
| | - Chuan Ying Li
- Research Institute of Plant Protection, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou 510640, China
| | - Xue Song Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu Ping Zhang
- Research Institute of Plant Protection, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou 510640, China.
| |
Collapse
|
4
|
Yang Y, Chu C, Qian Q, Tong H. Leveraging brassinosteroids towards the next Green Revolution. TRENDS IN PLANT SCIENCE 2024; 29:86-98. [PMID: 37805340 DOI: 10.1016/j.tplants.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
The use of gibberellin-related dwarfing genes significantly increased grain yield during the Green Revolution. Brassinosteroids (BRs) play a vital role in regulating agronomic traits and stress resistance. The potential of BR-related genes in crop improvement has been well demonstrated, positioning BRs as crucial targets for the next agricultural biotechnological revolution. However, BRs exert pleiotropic effects on plants, and thus present both opportunities and challenges for their application. Recent research suggests promising strategies for leveraging BR regulatory molecules for crop improvement, such as exploring function-specific genes, identifying beneficial alleles, inducing favorable mutations, and optimizing spatial hormone distribution. Advancing our understanding of the roles of BRs in plants is imperative to implement these strategies effectively.
Collapse
Affiliation(s)
- Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Su XN, Liu XS, Li CY, Zhang YP. Cytochrome P450 CYP90D5 Enhances Degradation of the Herbicides Isoproturon and Acetochlor in Rice Plants and Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37905821 DOI: 10.1021/acs.jafc.3c05963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The rice cytochrome P450 gene has been comprehensively studied in the present study. This gene encodes CYP90D5 in promoting the degradation of isoproturon (IPU) and acetochlor (ACT) in rice tissues and grains. It has here been found that CYP90D5 improved the resistance of the plant to IPU and ACT, which was reflected in the improvement of the growth of the overexpression (OE) lines. CYP90D5 also reduced the levels of IPU and ACT accumulation in rice, and the CRISPR-Cas9 (Cas9) lines displayed the opposite effects. This function of CYP90D5 for pesticide degradation was also confirmed by the transformation of CYP90D5 in Pichia pastoris. Compared with the control yeast, it grew better and could degrade more pesticides. In addition, the relative contents of the IPU and ACT derivatives increased in the OE rice, while they decreased in the Cas9 rice. This suggested that CYP90D5 plays a pivotal role in the pesticide detoxification and degradation.
Collapse
Affiliation(s)
- Xiang Ning Su
- Research Institute of Plant Protection, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou 510640, China
| | - Xue Song Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chuan Ying Li
- Research Institute of Plant Protection, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou 510640, China
| | - Yu Ping Zhang
- Research Institute of Plant Protection, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
6
|
Wen Z, Chen Z, Liu X, Sun J, Zhang F, Zhang M, Dong C. 24-Epibrassinolide Facilitates Adventitious Root Formation by Coordinating Cell-Wall Polyamine Oxidase- and Plasma Membrane Respiratory Burst Oxidase Homologue-Derived Reactive Oxygen Species in Capsicum annuum L. Antioxidants (Basel) 2023; 12:1451. [PMID: 37507989 PMCID: PMC10376213 DOI: 10.3390/antiox12071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Adventitious root (AR) formation is a critical process in cutting propagation of horticultural plants. Brassinosteroids (BRs) have been shown to regulate AR formation in several plant species; however, little is known about their exact effects on pepper AR formation, and the downstream signaling of BRs also remains elusive. In this study, we showed that treatment of 24-Epibrassinolide (EBL, an active BR) at the concentrations of 20-100 nM promoted AR formation in pepper (Capsicum annuum). Furthermore, we investigated the roles of apoplastic reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and superoxide radical (O2•-), in EBL-promoted AR formation, by using physiological, histochemical, bioinformatic, and biochemical approaches. EBL promoted AR formation by modulating cell-wall-located polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (RBOH)-dependent O2•- production, respectively. Screening of CaPAO and CaRBOH gene families combined with gene expression analysis suggested that EBL-promoted AR formation correlated with the upregulation of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in the AR zone. Transient expression analysis confirmed that CaPAO1 was able to produce H2O2, and CaRBOH2, CaRBOH5, and CaRBOH6 were capable of producing O2•-. The silencing of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in pepper decreased the ROS accumulation and abolished the EBL-induced AR formation. Overall, these results uncover one of the regulatory pathways for BR-regulated AR formation, and extend our knowledge of the functions of BRs and of the BRs-ROS crosstalk in plant development.
Collapse
Affiliation(s)
- Zhengyang Wen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| | - Xinyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingbo Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunjuan Dong
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| |
Collapse
|
7
|
Qiao Y, Zhang AP, Ma LY, Zhang N, Liu J, Yang H. An ABCG-type transporter intensifies ametryn catabolism by Phase III reaction mechanism in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131804. [PMID: 37302187 DOI: 10.1016/j.jhazmat.2023.131804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Pesticide residues in food crops are one of the seriously environmental contaminants that risk food safety and human health. Understanding the mechanism for pesticide catabolism is critical to develop effective biotechniques for rapid eliminating the residues in food crops. In this study we characterized a novel ABC transporter family gene ABCG52 (PDR18) in regulating rice response to pesticide ametryn (AME) widely used in the farmland. Efficient biodegradation of AME was evaluated by measuring its biotoxicity, accumulation, and metabolites in rice plants. OsPDR18 was localized to the plasma membrane and strongly induced under AME exposure. Transgenic rice overexpressing OsPDR18 (OE) conferred rice resistance and detoxification to AME by increasing chlorophyll contents, improving growth phenotypes, and reducing AME accumulation in plants. The AME concentrations in OE plants were only 71.8-78.1% (shoots) and 75.0-83.3% (roots) of the wild type. Mutation of OsPDR18 by CRISPR/Cas9 protocol led to the compromised growth and enhanced AME accumulation in rice. Five AME metabolites for Phase I and 13 conjugates for Phase II reactions in rice were characterized by HPLC/Q-TOF-HRMS/MS. Relative content analysis revealed that the AME metabolic products in OE plants were significantly reduced compared with wild-type. Importantly, the OE plants accumulated less AME metabolites and conjugates in rice grains, suggesting that OsPDR18 expression may actively facilitate the transport of AME for catabolism. These data unveil a AME catabolic mechanism by which OsPDR18 contributes to the AME detoxification and degradation in rice crops.
Collapse
Affiliation(s)
- Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Ping Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Qiao Y, Zhang N, Liu J, Yang H. Interpretation of ametryn biodegradation in rice based on joint analyses of transcriptome, metabolome and chemo-characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130526. [PMID: 36463741 DOI: 10.1016/j.jhazmat.2022.130526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Agrochemicals such as pesticide residues become environmental contaminants due to their ecotoxic risks to plant, animal and human health. Ametryn (AME) is a widely used farmland pesticide and its residues are widespread in soils, surface stream and groundwater. However, its toxicological and degradative mechanisms in plants and food crops are largely unknown. This study comprehensively investigated AME toxicology and degradation mechanisms in a paddy crop. AME was freely absorbed by rice roots, translocated to the above-ground and thus repressed plant elongation, and reduced dry weight and chlorophyll concentration, but increased oxidative injury and subcellular electrolyte permeability. Analysis of the transcriptome and metabolome revealed that exposure to AME evoked global AME-responsive genes and step-wise catabolism of AME. We detected 995 (roots) and 136 (shoots) upregulated and differentially expressed genes (DEGs) in response to AME. Metabolomic profiling revealed that many basal metabolites such as carbohydrates, amino acids, glutathione, hormones and phenylpropanoids involved in AME catabolism were accordingly accumulated in rice. Eight metabolites and twelve conjugates of AME were characterized by HPLC-Q-TOF-HRMS/MS. These AME metabolites and conjugates are closely related to DEGs, differentially accumulated metabolites (DAMs) and activities of antioxidative enzymes. Collectively, our work highlights the specific mechanisms for AME degradative metabolism through Phase I and II reactive pathways (e.g. hydroxylation and dealkylation), with will help develop genetically engineered rice used to bioremediate AME-contaminated paddy soils and minimize AME accumulation rice crops.
Collapse
Affiliation(s)
- Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Li N, Zhang JJ, Liu J, Zhang N, Yang H. Biodegradation of butachlor in rice intensified by a regulator of OsGT1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113942. [PMID: 35926410 DOI: 10.1016/j.ecoenv.2022.113942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The constant utilization of herbicide butachlor to prevent weeds in agronomic management is leading to its growing accumulation in environment and adverse impact on crop production and food security. Some technologies proposed for butachlor degradation in waters and farmland soils are available, but the catabolic mechanism in crops polluted with butachlor remains unknown. How plants cope with the ecotoxicity of butachlor is not only a fundamental scientific question but is also of critical importance for safe crop production and human health. This study developed a genetically improved rice genotype by overexpressing a novel glycosyltransferase gene named OsGT1 to accelerate removal of butachlor residues in rice crop and its growth environment. Both transcriptional expression and protein activates of OsGT1 are considerably induced under butachlor stress. The growth of the OsGT1 overexpression rice (OsOE) was significantly improved and butachlor-induced cellular damage was greatly attenuated compared to its wild-type (WT). The butachlor concentrations in shoots and roots of the hydroponically grown OsOE plants were reduced by 14.1-30.7 % and 37.8-47.7 %. In particular, the concentrations in the grain of OsOE lines were reduced to 54.6-85.6 % of those in wild-type. Using LC-Q-TOF-HRMS/MS, twenty-three butachlor derivatives including 16 metabolites and 7 conjugations with metabolic pathways were characterized, and it turns out that the OsOE lines accumulated more degradative products than wild-type, implying that more butachlor molecules were intensively catabolized. Taken together, the reduced residues of parent butachlor in rice and its growth media point out that OsGT1 plays a critical role in detoxifying and catabolizing the poisoning chemical in plants and its environment.
Collapse
Affiliation(s)
- Na Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|