1
|
Li Y, Wang Z, Ma S, Tang X, Zhang H. Chemical Space Exploration and Machine Learning-Based Screening of PDE7A Inhibitors. Pharmaceuticals (Basel) 2025; 18:444. [PMID: 40283882 PMCID: PMC12030294 DOI: 10.3390/ph18040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Phosphodiesterase 7 (PDE7), a member of the PDE superfamily, selectively catalyzes the hydrolysis of cyclic adenosine 3',5'-monophosphate (cAMP), thereby regulating the intracellular levels of this second messenger and influencing various physiological functions and processes. There are two subtypes of PDE7, PDE7A and PDE7B, which are encoded by distinct genes. PDE7 inhibitors have been shown to exert therapeutic effects on neurological and respiratory diseases. However, FDA-approved drugs based on the PDE7A inhibitor are still absent, highlighting the need for novel compounds to advance PDE7A inhibitor development. Methods: To address this urgent and important issue, we conducted a comprehensive cheminformatics analysis of compounds with potential for PDE7A inhibition using a curated database to elucidate the chemical characteristics of the highly active PDE7A inhibitors. The specific substructures that significantly enhance the activity of PDE7A inhibitors, including benzenesulfonamido, acylamino, and phenoxyl, were identified by an interpretable machine learning analysis. Subsequently, a machine learning model employing the Random Forest-Morgan pattern was constructed for the qualitative and quantitative prediction of PDE7A inhibitors. Results: As a result, six compounds with potential PDE7A inhibitory activity were screened out from the SPECS compound library. These identified compounds exhibited favorable molecular properties and potent binding affinities with the target protein, holding promise as candidates for further exploration in the development of potent PDE7A inhibitors. Conclusions: The results of the present study would advance the exploration of innovative PDE7A inhibitors and provide valuable insights for future endeavors in the discovery of novel PDE inhibitors.
Collapse
Affiliation(s)
- Yuze Li
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.W.); (S.M.)
| | - Zhe Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.W.); (S.M.)
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao 266071, China
| | - Shengyao Ma
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.W.); (S.M.)
| | - Xiaowen Tang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao 266071, China
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Hanting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.W.); (S.M.)
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Casarrubios L, Cicuéndez M, Polo-Montalvo A, Feito MJ, Martínez-Del-Pozo Á, Arcos D, Duarte IF, Portolés MT. Metabolomic characterization of MC3T3-E1pre-osteoblast differentiation induced by ipriflavone-loaded mesoporous nanospheres. BIOMATERIALS ADVANCES 2025; 166:214085. [PMID: 39490191 DOI: 10.1016/j.bioadv.2024.214085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
This study reports on the metabolic changes accompanying the differentiation of MC3T3-E1 osteoprogenitor cells induced by mesoporous bioactive glass nanospheres (nMBG) loaded with ipriflavone (nMBG-IP). Ipriflavone (IP) is a synthetic isoflavone known for inhibiting bone resorption, maintaining bone density, and preventing osteoporosis. Delivering IP intracellularly is a promising strategy to modulate bone remodeling at significantly lower doses compared to free drug administration. Our results demonstrate that nMBG are efficiently internalized by pre-osteoblasts and, when loaded with IP, induce their differentiation. This differentiation process is accompanied by pronounced metabolic alterations, as monitored by NMR analysis of medium supernatants and cell extracts (exo- and endo-metabolomics, respectively). The main effects include an early-stage intensification of glycolysis and changes in several metabolic pathways, such as nucleobase metabolism, osmoregulatory and antioxidant pathways, and lipid metabolism. Notably, the metabolic impacts of nMBG-IP and free IP were very similar, whereas nMBG alone induced only mild changes in the intracellular metabolic profile without affecting the cells' consumption/secretion patterns or lipid composition. This finding indicates that the observed effects are primarily related to IP-induced differentiation and that nMBG nanospheres serve as convenient carriers with both efficient internalization and minimal metabolic impact. Furthermore, the observed link between pre-osteoblast differentiation and metabolism underscores the potential of utilizing metabolites and metabolic reprogramming as strategies to modulate the osteogenic process, for instance, in the context of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Mónica Cicuéndez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Polo-Montalvo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain.
| |
Collapse
|
3
|
Leibe R, Fritsch-Decker S, Gussmann F, Wagbo AM, Wadhwani P, Diabaté S, Wenzel W, Ulrich AS, Weiss C. Key Role of Choline Head Groups in Large Unilamellar Phospholipid Vesicles for the Interaction with and Rupture by Silica Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207593. [PMID: 37098631 DOI: 10.1002/smll.202207593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles. Surface modification by either protein adsorption or by covalent coupling of carboxyl groups suppresses the disintegration of these lipid vesicles, as well as membranolysis in human A549 lung epithelial cells by the silica nanoparticles. Furthermore, molecular modeling suggests a preferential affinity of silanol groups for choline head groups, which is also modulated by the pH value. Biomimetic lipid vesicles can thus be used to better understand specific phospholipid-nanoparticle interactions at the molecular level to support the rational design of safe advanced materials.
Collapse
Affiliation(s)
- Regina Leibe
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Susanne Fritsch-Decker
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Gussmann
- Institute of Nanotechnology (INT), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ane Marit Wagbo
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Silvia Diabaté
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Gao Y, Sun W, Zhang Y, Liu L, Zhao W, Wang W, Song Y, Sun Y, Ma Q. All-Aqueous Microfluidics Fabrication of Multifunctional Bioactive Microcapsules Promotes Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48426-48437. [PMID: 36265178 DOI: 10.1021/acsami.2c13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wound healing involves multiple stages of body responses, including hemostasis, inflammation, cell proliferation, and tissue remodeling. New material design satisfying all demands throughout different stages of wound healing is cherished but rarely discussed. Here we introduce all-aqueous multiphase microfluidics as a novel strategy to fabricate self-assembled, multifunctional alkylated chitosan/alginate microcapsules (SAAMs) as novel therapeutic materials for rapid blood coagulation and wound healing. SAAMs are structurally distinguished by their ultrathin shells with polycationic surface for rapid activation of clotting cascade and their internal porous dextran-rich cores for fast absorption of blood and exudate. These features endow SAAMs with excellent hemostatic properties for acute hemorrhage. Moreover, the alkylated chitosan within the microcapsules exhibits persistent antimicrobial activities against bactericidal infections due to their amphiphilic and cationic surfaces. Besides, cytokines can be safely loaded into the organic-solvent-free microcapsules and released precisely to promote the proliferation of epidermal cells, supporting the subsequent development of granulation tissue and suppression of inflammation in the last stages of wound healing. With the ability to fabricate size-tailored soft microcapsules and to realize time-sequential functions for tissue repairing, the presented "all-aqueous microfluidics generation of multifunctional bioactive SAAMs" create a versatile and robust paradigm for wound treatment.
Collapse
Affiliation(s)
- Yang Gao
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin300071, P.R. China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao266113, P.R. China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong999077, P.R. China
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong518060, P.R. China
| | - Lijun Liu
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composite, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Yong Sun
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| |
Collapse
|
5
|
Zhang H, Chen Y, Wang J, Wang Y, Wang L, Duan Z. Effects of temperature on the toxicity of waterborne nanoparticles under global warming: Facts and mechanisms. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105757. [PMID: 36208504 DOI: 10.1016/j.marenvres.2022.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Global climate change is predicted to increase the average temperature of aquatic environments. Temperature changes modulate the toxicity of emerging chemical contaminants, such as nanoparticles (NPs). However, current hazard assessments of waterborne NPs seldom consider the influence of temperature. In this review, we gathered and analyzed the effects of temperature on the toxicity of waterborne NPs in different organisms. There was a general decrease in bioavailability with increasing temperature in algae and plants due to NPs aggregation, thus, reducing their toxicities. However, the agglomerated large particles caused by the increase in temperature induce a shading effect and inhibit algal photosynthesis. The toxicity of NPs in microorganisms and aquatic animals increases with increasing temperature. This may be due to the significant influence of high temperature on the uptake and excretion of chemicals across membranes, which increase the production of reactive oxygen species and enhance oxidative damage to organisms. High temperature also affect the formation and composition of a protein corona on NPs, altering their toxicity. Our results provide new insights into the toxicity of NPs in the context of global warming, and highlight the deficiencies of current research on NPs.
Collapse
Affiliation(s)
- Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yizhuo Chen
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jing Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Zhao W, Zhang Y, Liu L, Gao Y, Sun W, Sun Y, Ma Q. Microfluidic-based functional materials: new prospects for wound healing and beyond. J Mater Chem B 2022; 10:8357-8374. [DOI: 10.1039/d2tb01464e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Microfluidics has been applied to fabricate high-performance functional materials contributing to all physiological stages of wound healing. The advances of microfluidic-based functional materials for wound healing have been summarized.
Collapse
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yage Zhang
- Department of Mechanical, University of Hong Kong, Hong Kong SAR, China
| | - Lijun Liu
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yang Gao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yong Sun
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|