1
|
Gao Y, Li J, Wang W, Tian Y. Molecular and physiological responses of black rockfish (Sebastes schlegelii) to short- and medium-term ocean acidification. ENVIRONMENTAL RESEARCH 2025; 275:121431. [PMID: 40118312 DOI: 10.1016/j.envres.2025.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Ocean acidification (OA) is one of the greatest threats to marine species, with widespread impacts on their physiological functions. However, the adaptive capacities of many marine species to OA and the underlying mechanisms remain unclear. In this study, we investigated the effects of short-term (4 days) and medium-term (30 days) CO2 exposure (pH 8.0, 7.6, and 7.3) on black rockfish (Sebastes schlegelii), focusing on histopathological changes in gill tissues, ion transport biomarkers, oxidative stress indicators, and transcriptomic responses. The results showed that both short-term and medium-term OA induced significant morphological changes in gill tissues, including epithelial lifting, hyperplasia, hypertrophy, and lamellar clubbing, which are likely adaptive mechanisms for maintaining homeostasis. Both Na+/K+-ATPase and carbonic anhydrase (CA) activities increased significantly in both short- and medium-term exposure, while Ca2+-ATPase activity was elevated only in the short-term, suggesting differential enzyme regulation over time to sustain ionic balance. Additionally, oxidative stress indicators (superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx)) were significantly elevated after both exposure durations, indicating that the antioxidant defense system was activated. Moreover, the integrated biomarker response (IBR) index further indicated that the stress response was more pronounced during short-term exposure. Transcriptomic analysis reveals significant alterations in pathways related to calcium signaling, cytoskeletal structure, energy metabolism, and oxidative stress following short-term exposure. In contrast, medium-term exposure leads to significant enrichment of pathways associated with cell-environment interactions, highlighting the molecular adaptations of S. schlegelii to OA-induced stress. These findings provide valuable insights into the mechanisms of OA tolerance in S. schlegelii and contribute to understanding the adaptability of marine species in future ocean environments.
Collapse
Affiliation(s)
- Yunhong Gao
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Jianchao Li
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Wenwen Wang
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Yongjun Tian
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Jiang S, He L, Cao L, Sun R, Dai Z, Liang YQ, Ren L, Sun S, Li C. Unraveling individual and combined toxicity of microplastics and tetracycline at environment-related concentrations to coral holobionts. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137823. [PMID: 40054197 DOI: 10.1016/j.jhazmat.2025.137823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/14/2024] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Coral holobionts constitute the foundational organisms of coral reef ecosystems. As an emerging pollutant, the projected accumulated levels of microplastics (MPs) are expected to continue increasing. Meanwhile, due to their properties, MPs can absorb multiple other marine pollutants, such as antibiotics (ATs). However, the co-toxicity mechanism of MPs and ATs to coral holobionts remains to be explored. Here, using Zoanthus sociatus as a model organism, we investigate the individual and combined toxicity of MPs and tetracycline (TC) at environment-related concentrations to coral holobionts. Microbiomics indicate that MPs and TC increase coral holobionts bacterial species richness while concurrently reducing the microbial community structure stability. The key metabolites and enzyme activity results demonstrated that the impacts of MPs and TC on corals encompassed antioxidant capacity, detoxification capability, immune function, and lipid metabolism. Transcriptomics shows that MPs and TC disrupt coral-algae relationships mainly through host nutrition limitation and inhibition of symbiotic algae carbon/nitrogen metabolism, respectively. A synergistic effect between MPs and TC has also been observed. In contrast, coral holobionts have shown adaptability through activating coral-symbiodiniaceae-bacteria interactions, mainly including: 1) enhancing the abundance of BMCs (beneficial microorganisms for corals); 2) enhancing host lipid accumulation; 3) immunoregulation; 4) symbiotic regulation. Overall, our findings provide new insights into the co-toxicity of MPs and TC, and highlight those MPs and TC at current environment concentration and predicted for most oceans in the coming decades, can ultimately cause coral bleaching.
Collapse
Affiliation(s)
- Shiqi Jiang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linglong Cao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Analytical and Testing Center, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
3
|
Yu Q, He C, Wang Y, An M, Tang K, Liu Z, Zhou Z. The differential physiological responses to heat stress in the scleractinian coral Pocillopora damicornis are affected by its energy reserve. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106966. [PMID: 39864288 DOI: 10.1016/j.marenvres.2025.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
The scleractinian corals conduct various responses upon heat stress such as bleaching and tissue loss, and colonies from the same coral species can conduct differential physiological activities with the biochemical basis unknown. In the present study, factors that influence the heat stress responses in coral Pocillopora damicornis were investigated. It was observed that P. damicornis conducted three differential physiological responses under heat treatment including tissue loss, bleaching, and polyp bailout. During heat response process, coral colonies conducting tissue loss had significantly higher total antioxidant capacity (T-AOC) level, while the bleached coral colonies exhibited higher caspase-3 activation level. Moreover, the stress response varied based on the energy reserve status. Colonies with higher lipid and sugar reserves were more likely to bleach, while those with lower reserves tended to undergo polyp bailout. We demonstrate that energy reserves influence the heat response patterns of P. damicornis. Colonies with higher lipid and sugar reserves may survive longer under heat stress, suggesting that these energy reserves contribute to their heat resistance. This study suggests that colonies with higher energy reserves prior to thermal stress may have greater thermal resistance, indicating that long-term environmental stressors that deplete energy reserves could increase susceptibility to thermal stress.
Collapse
Affiliation(s)
- Qiuyu Yu
- School of Marine Science and Engineering, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, China
| | - Chunlong He
- School of Marine Science and Engineering, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, China
| | - Yi Wang
- School of Marine Science and Engineering, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, China
| | - Mingxun An
- School of Marine Science and Engineering, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, China
| | - Kai Tang
- School of Marine Science and Engineering, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, China
| | - Zhaoqun Liu
- School of Marine Science and Engineering, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, China.
| | - Zhi Zhou
- School of Marine Science and Engineering, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, China.
| |
Collapse
|
4
|
Huang W, Huang Z, Yang E, Meng L, Chen J, Tan R, Xiao Z, Zhou Y, Xu M, Yu K. High- and low-temperature stress responses of Porites lutea from the relatively high-latitude region of the South China Sea. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106858. [PMID: 39615101 DOI: 10.1016/j.marenvres.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 02/09/2025]
Abstract
Global climate change has led to more frequent extreme temperature (extreme heat and cold) events, posing a serious threat to coral reef ecosystems. Higher latitudes are considered potential refuges for reef-building corals, but their response to extreme temperature stress in these regions remain unclear. This study, indoor simulated stress experiments ranging on Porites lutea from Weizhou Island in the northern part of the South China Sea, simulating suitable (26 °C) to extreme high (34 °C) and extreme low (12 °C) temperatures. Physiological, biochemical, and transcriptional responses, were analysed. Results showed P. lutea's tentacles contracted, and symbiotic relationships broke down at both high and low temperatures; leading to oxidative stress, and a higher risk of disease. The coral host's response to temperature stress was positively regulated, mainly through apoptosis and metabolic inhibition pathways, whereas Symbiodiniaceae C15 showed no significant response to either high- or low-temperature stress. The coral host played a dominant role in the holobiont's stress response, using similar mechanisms for both high- and low-temperatures with some differences in the details. This study enhances understanding the temperature response mechanisms of the dominant coral species, P. lutea in the relatively high-latitude regions of the South China Sea.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhihua Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jinlian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ronghua Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zunyong Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yupeng Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Mingpei Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| |
Collapse
|
5
|
Cecchini P, Nitta T, Sena E, Du ZY. Saving coral reefs: significance and biotechnological approaches for coral conservation. ADVANCED BIOTECHNOLOGY 2024; 2:42. [PMID: 39883363 PMCID: PMC11740877 DOI: 10.1007/s44307-024-00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025]
Abstract
Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage. UV and heat stress are commonly implicated in bleaching, but other anthropogenic factors may also play a role. To address coral loss, active restoration is already underway in many critical regions. Additionally, coral researchers are exploring assisted evolution methods for greater coral resilience to projected climate change. This review provides an overview of the symbiotic relationship, the mechanisms underlying coral bleaching in response to stressors, and the strategies being pursued to address coral loss. Despite the necessity of ongoing research in all aspects of this field, action on global climate change remains crucial for the long-term survival of coral reefs.
Collapse
Affiliation(s)
- Pansa Cecchini
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Thomas Nitta
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Edoardo Sena
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
6
|
Sun Y, Sheng H, Rädecker N, Lan Y, Tong H, Huang L, Jiang L, Diaz-Pulido G, Zou B, Zhang Y, Kao SJ, Qian PY, Huang H. Symbiodiniaceae algal symbionts of Pocillopora damicornis larvae provide more carbon to their coral host under elevated levels of acidification and temperature. Commun Biol 2024; 7:1528. [PMID: 39558079 PMCID: PMC11573989 DOI: 10.1038/s42003-024-07203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Climate change destabilizes the symbiosis between corals and Symbiodiniaceae. The effects of ocean acidification and warming on critical aspects of coral survical such as symbiotic interactions (i.e., carbon and nitrogen assimilation and exchange) during the planula larval stage remain understudied. By combining physiological and stable isotope techniques, here we show that photosynthesis and carbon and nitrogen assimilation (H13CO3- and 15NH4+) in Pocillopora damicornis coral larvae is enhanced under acidification (1000 µatm) and elevated temperature (32 °C). Larvae maintain high survival and settlement rates under these treatment conditions with no observed decline in symbiont densities or signs of bleaching. Acidification and elevated temperature both enhance the net and gross photosynthesis of Symbiodiniaceae. This enhances light respiration and elevates C:N ratios within the holobiont. The increased carbon availability is primarily reflected in the 13C enrichment of the host, indicating a greater contribution of the algal symbionts to the host metabolism. We propose that this enhanced mutualistic symbiotic nutrient cycling may bolster coral larvae's resistance to future ocean conditions. This research broadens our understanding of the early life stages of corals by emphasizing the significance of symbiotic interactions beyond those of adult corals.
Collapse
Affiliation(s)
- Youfang Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Nils Rädecker
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Yi Lan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Haoya Tong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Lintao Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Guillermo Diaz-Pulido
- School of Environment and Science, Coastal and Marine Research Centre, Nathan Campus, Griffith University, Brisbane, Nathan Campus, QLD, 4111, Australia
| | - Bobo Zou
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Yuyang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
7
|
Walker NS, Isma L, García N, True A, Walker T, Watkins J. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Integr Comp Biol 2024; 64:1141-1153. [PMID: 39054304 DOI: 10.1093/icb/icae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Global ocean warming is affecting keystone species distributions and fitness, resulting in the degradation of marine ecosystems. Coral reefs are one of the most diverse and productive marine ecosystems. However, reef-building corals, the foundational taxa of coral reef ecosystems, are severely threatened by thermal stress. Models predict 40-80% of global coral cover will be lost by 2100, which highlights the urgent need for widespread interventions to preserve coral reef functionality. There has been extensive research on coral thermal stress and resilience, but 95% of studies have focused on adult corals. It is necessary to understand stress during early life stages (larvae, recruits, and juveniles), which will better inform selective breeding programs that aim to replenish reefs with resilient stock. In this review, we surveyed the literature on coral thermal resilience in early life stages, and we highlight that studies have been conducted on relatively few species (commonly Acropora spp.) and in limited regions (mainly Australia). Reef-building coral management will be improved by comprehensively understanding coral thermal resilience and fitness across life stages, as well as in diverse species and regions.
Collapse
Affiliation(s)
- Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Mānoa, HI, USA 96744
| | - Lys Isma
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Nepsis García
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Aliyah True
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Taylor Walker
- Department of BioSciences, Rice University, Houston, TX, USA 77005
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, USA 94720
| | - Joyah Watkins
- Department of BioSciences, Rice University, Houston, TX, USA 77005
| |
Collapse
|
8
|
Rachmilovitz EN, Shaish L, Douek J, Rinkevich B. Population genetics assessment of two pocilloporid coral species from the northern red sea: Implications for urbanized reef sustainability. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106580. [PMID: 38851082 DOI: 10.1016/j.marenvres.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Understanding the genetic makeup of key coral species is vital for effective coral reef management, as heightened genetic diversity directly influences long-term survival and resilience against environmental changes. This study focused on two widespread Indo-Pacific branching corals, Pocillopora damicornis (referred as Pocillopora cf. damicornis (as identified only morphologically) and Seriatopora hystrix, by genotyping 222 and 195 colonies, respectively, from 10 sites in the northern Gulf of Eilat, Red Sea, using six and five microsatellite markers, respectively. Both species exhibited low observed heterozygosity (0.47 for P. cf. damicornis, 0.32 for S. hystrix) and similar expected heterozygosity (0.576 for P. cf. damicornis, 0.578 for S. hystrix). Pocillopora cf. damicornis showed minimal deviations from Hardy-Weinberg equilibrium (HWE) and low but positive F values, indicating high gene flow, while S. hystrix exhibited higher diversion from HWE and positive F values, suggesting isolation by distance and possible non-random mating or genetic drift. As the Gulf of Eilat undergoes rapid urbanization, this study highlights the anthropogenic impacts on the population genetics of key ecosystem engineering species and emphasizes the importance of managing genetics of Marine Protected Areas while implementing active coral reef restoration. The differences in reproductive traits between the two species (S. hystrix being a brooder, while P. cf. damicornis a broadcast spawner), underscore the need for sustainable population genetics management of the coral reefs for the future and resilience of the coral reef ecosystem of the northern Red Sea region.
Collapse
Affiliation(s)
- Elad Nehoray Rachmilovitz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 2336, Haifa, 3102201, Israel; Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, 3498838, Israel.
| | - Lee Shaish
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 2336, Haifa, 3102201, Israel
| | - Jacob Douek
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 2336, Haifa, 3102201, Israel.
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 2336, Haifa, 3102201, Israel.
| |
Collapse
|
9
|
Jiang L, Zhang P, Huang LT, Yu XL, Liu CY, Yuan XC, Liu S, Huang H. Life-stage specificity and temporal variations in transcriptomes and DNA methylomes of the reef coral Pocillopora damicornis in response to thermal acclimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171098. [PMID: 38387572 DOI: 10.1016/j.scitotenv.2024.171098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Understanding the acclimation capacity of reef corals across generations to thermal stress and its underlying molecular underpinnings could provide insights into their resilience and adaptive responses to future climate change. Here, we acclimated adult brooding coral Pocillopora damicornis to high temperature (32 °C vs. 29 °C) for three weeks and analyzed the changes in phenotypes, transcriptomes and DNA methylomes of adult corals and their brooded larvae. Results showed that although adult corals did not show noticeable bleaching after thermal exposure, they released fewer but larger larvae. Interestingly, larval cohorts from two consecutive lunar days exhibited contrasting physiological resistance to thermal stress, as evidenced by the divergent responses of area-normalized symbiont densities and photochemical efficiency to thermal stress. RNA-seq and whole-genome bisulfite sequencing revealed that adult and larval corals mounted distinct transcriptional and DNA methylation changes in response to thermal stress. Remarkably, larval transcriptomes and DNA methylomes also varied greatly among lunar days and thermal treatments, aligning well with their physiological metrics. Overall, our study shows that changes in transcriptomes and DNA methylomes in response to thermal acclimation can be highly life stage-specific. More importantly, thermally-acclimated adult corals could produce larval offspring with temporally contrasting photochemical performance and thermal resilience, and such variations in larval phenotypes are associated with differential transcriptomes and DNA methylomes, and are likely to increase the likelihood of reproductive success and plasticity of larval propagules under thermal stress.
Collapse
Affiliation(s)
- Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Pan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Cheng-Yue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiang-Cheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Sheng Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
10
|
Sun Y, Lan Y, Rädecker N, Sheng H, Diaz-Pulido G, Qian PY, Huang H. Gene expression of Pocillopora damicornis coral larvae in response to acidification and ocean warming. BMC Genom Data 2024; 25:28. [PMID: 38459437 PMCID: PMC10924396 DOI: 10.1186/s12863-024-01211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVES The endosymbiosis with Symbiodiniaceae is key to the ecological success of reef-building corals. However, climate change is threatening to destabilize this symbiosis on a global scale. Most studies looking into the response of corals to heat stress and ocean acidification focus on coral colonies. As such, our knowledge of symbiotic interactions and stress response in other stages of the coral lifecycle remains limited. Establishing transcriptomic resources for coral larvae under stress can thus provide a foundation for understanding the genomic basis of symbiosis, and its susceptibility to climate change. Here, we present a gene expression dataset generated from larvae of the coral Pocillopora damicornis in response to exposure to acidification and elevated temperature conditions below the bleaching threshold of the symbiosis. DATA DESCRIPTION This dataset is comprised of 16 samples (30 larvae per sample) collected from four treatments (Control, High pCO2, High Temperature, and Combined pCO2 and Temperature treatments). Freshly collected larvae were exposed to treatment conditions for five days, providing valuable insights into gene expression in this vulnerable stage of the lifecycle. In combination with previously published datasets, this transcriptomic resource will facilitate the in-depth investigation of the effects of ocean acidification and elevated temperature on coral larvae and its implication for symbiosis.
Collapse
Affiliation(s)
- Youfang Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, 572000, Sanya, China
| | - Yi Lan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, 511458, Guangzhou, China
| | - Nils Rädecker
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101, Xiamen, China
| | - Guillermo Diaz-Pulido
- School of Environment and Science, Coastal and Marine Research Centre, and Australian Rivers Institute, Griffith University, Nathan Campus, 4111, Brisbane, Queensland, Australia
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, 572000, Sanya, China.
- Southern Marine Science and Engineering Guangdong Laboratory, 511458, Guangzhou, China.
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, 572000, Sanya, China.
| |
Collapse
|
11
|
Li Y, Zhang X, Tong R, Xu Q, Zhang N, Liao Q, Pan L. Mechanisms of ammonotelism, epithelium damage, cellular apoptosis, and proliferation in gill of Litopenaeus vannamei under NH 4Cl exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15153-15171. [PMID: 38289553 DOI: 10.1007/s11356-024-32111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Excessive ammonia-N in coastal environment and aquaculture threatens the health of marine organisms. To explore the mechanism of gill damage induced by ammonia-N, transcriptome of Litopenaeus vannamei 's gill was carried out under 20 mg/L NH4Cl for 0, 6, and 48 h. K-means clustering analysis suggested that ammonia excretion and metabolism-related genes were elevated. GO and KEGG enrichment analysis suggested that glycosyltransferase activity and amino acid metabolism were affected by ammonia. Moreover, histological observation via three staining methods gave clues on the changes of gill after ammonia-N exposure. Increased mucus, hemocyte infiltration, and lifting of the lamellar epithelium suggested that gill epithelium was suffering damage under ammonia-N stress. Meanwhile, the composition of extracellular matrix (ECM) in connective tissue changed. Based on the findings of transcriptomic and histological analysis, we further investigated the molecular mechanism of gill damage under multiple concentrations of NH4Cl (0, 2, 10, 20 mg/L) for multiple timepoints (0, 3, 6, 12, 24, 48, 72 h). First, ammonia excretion was elevated via ion channel, transporter, and exocytosis pathways, but hemolymph ammonia still kept at a high level under 20 mg/L NH4Cl exposure. Second, we focused on glycosaminoglycan metabolism which was related to the dynamics of ECM. It turned out that the degradation and biosynthesis of chondroitin sulfate (CS) were elevated, suggesting that the structure of CS might be destructed under ammonia-N stress and CS played an important role in maintaining gill structure. It was enlightening that the destructions occurred in extracellular regions were vital to gill damage. Third, ammonia-N stress induced a series of cellular responses including enhanced apoptosis, active inflammation, and inhibited proliferation which were closely linked and jointly led to the impairment of gill. Our results provided some insights into the physiological changes induced by ammonia-N and enriched the understandings of gill damage under environmental stress.
Collapse
Affiliation(s)
- Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qiuhong Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
12
|
Zhai X, Zhang Y, Zhou J, Li H, Wang A, Liu L. Physiological and microbiome adaptation of coral Turbinaria peltata in response to marine heatwaves. Ecol Evol 2024; 14:e10869. [PMID: 38322002 PMCID: PMC10844694 DOI: 10.1002/ece3.10869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 02/08/2024] Open
Abstract
Against the backdrop of global warming, marine heatwaves are projected to become increasingly intense and frequent. This trend poses a potential threat to the survival of corals and the maintenance of entire coral reef ecosystems. Despite extensive evidence for the resilience of corals to heat stress, their ability to withstand repeated heatwave events has not been determined. In this study, we examined the responses and resilience of Turbinaria peltata to repeated exposure to marine heatwaves, with a focus on physiological parameters and symbiotic microorganisms. In the first heatwave, from a physiological perspective, T. peltata showed decreases in the Chl a content and endosymbiont density and significant increases in GST, caspase-3, CAT, and SOD levels (p < .05), while the effects of repeated exposure on heatwaves were weaker than those of the initial exposure. In terms of bacteria, the abundance of Leptospira, with the potential for pathogenicity and intracellular parasitism, increased significantly during the initial exposure. Beneficial bacteria, such as Achromobacter arsenitoxydans and Halomonas desiderata increased significantly during re-exposure to the heatwave. Overall, these results indicate that T. peltata might adapt to marine heatwaves through physiological regulation and microbial community alterations.
Collapse
Affiliation(s)
- Xin Zhai
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - YanPing Zhang
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
- Guangdong Laboratory of Southern Ocean Science and EngineeringZhanjiangChina
| | - Jie Zhou
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - Hao Li
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - Ao Wang
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
| | - Li Liu
- College of FisheriesGuangdong Ocean UniversityZhanjiangChina
- Guangdong Laboratory of Southern Ocean Science and EngineeringZhanjiangChina
| |
Collapse
|
13
|
Zhang Y, Luo L, Gan P, Chen X, Li X, Pang Y, Yu X, Yu K. Exposure to pentachlorophenol destructs the symbiotic relationship between zooxanthellae and host and induces pathema in coral Porites lutea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167956. [PMID: 37884147 DOI: 10.1016/j.scitotenv.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Stress from chemical pollutants is among the key issues that have adverse impacts on coral reefs. As a persistent organic pollutant, pentachlorophenol (PCP) has been detected in the seawater of Weizhou Island and was proved to have significant adverse effects on aquatic animals. However, little is known about its effects on scleractinian coral. Therefore, we investigated the response of the coral Porites lutea to PCP stress. Coral bleaching, photosynthesis parameters and antioxidant enzyme activities of P. lutea under PCP exposure were documented. After 96 h of exposure, significant tissue loss and bleaching occurred when the PCP concentration exceeded 100 μg/L. The density of symbiotic zooxanthellae decreased from 2.06 × 106 cells/cm2 to 0.93 × 106 cells/cm2 when the PCP concentration increased from 1 μg/L- 1000 μg/L. Long-term exposure of 120 days to PCP at 0.1 μg/L also led to coral bleaching, the maximum photochemical quantum yield of PSII in P. lutea nubbins significantly decreased to 0.482. The analysis of microbial community distribution indicated that the increase of the pathogenic bacterium Citrobacter may be one of the inducers of coral bleaching. Conjoint analysis of transcriptomics and proteomics showed that the metabolism of amino acids and carbohydrates in zooxanthellae was abnormal, leading to the destruction of its symbiotic relationship with the host. The immune system of the host was disrupted, which could be linked to the prevalence of coral pathema. The toxic responses of PCP on both zooxanthellae and its host were further confirmed by the upregulation of the differential metabolites including 1-naphthylamine and phosphatidylcholine, etc.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Lan Luo
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pin Gan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaoli Li
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yan Pang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaopeng Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
14
|
Fu JR, Zhou J, Zhang YP, Liu L. Effects of Caulerpa taxifolia on Physiological Processes and Gene Expression of Acropora hyacinthus during Thermal Stress. BIOLOGY 2022; 11:biology11121792. [PMID: 36552301 PMCID: PMC9775474 DOI: 10.3390/biology11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
An increasing ecological phase shift from coral-dominated reefs to macroalgae-dominated reefs as a result of anthropogenic impacts, such as eutrophication, sedimentation, and overfishing, has been observed in many reef systems around the world. Ocean warming is a universal threat to both corals and macroalgae, which may alter the outcome of competition between them. Therefore, in order to explore the effects of indirect and direct exposure to macroalgae on the physiological, biochemical, and genetic expression of corals at elevated temperature, the coral Acropora hyacinthus and highly invasive green algae Caulerpa taxifolia were chosen. Physiologically, the results exhibited that, between the control and direct contact treatments, the density and chlorophyll a content of zooxanthella decreased by 53.1% and 71.2%, respectively, when the coral indirectly contacted with the algae at an ambient temperature (27 °C). Moreover, the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in coral tissue were enhanced by interacting with algae. After an increase of 3 °C, the density and chlorophyll a content of the zooxanthella reduced by 84.4% and 93.8%, respectively, whereas the enzyme activities of SOD and CAT increased 2.3- and 3.1-fold. However, only the zooxanthellae density and pigment content decreased when Caulerpa taxifolia was co-cultured with Acropora hyacinthus at 30 °C. Molecularly, different from the control group, the differentially expressed genes (DEGs) such as Rab family, ATG family, and Casp7 genes were significantly enriched in the endocytosis, autophagy, and apoptosis pathways, regardless of whether Acropora hyacinthus was directly or indirectly exposed to Caulerpa taxifolia at 27 °C. Under thermal stress without algae interaction, the DEGs were significantly enriched in the microbial immune signal transduction pathways, such as the Toll-like receptor signaling pathway and TNF signaling pathway, while multiple cellular immunity (IFI47, TRAF family) and oxidative stress (CAT, SODC, HSP70) genes were upregulated. Inversely, compared with corals without interaction with algae at 30 °C, the DEGs of the corals that interacted with Caulerpa taxifolia at 30 °C were remarkably enriched in apoptosis and the NOD-like receptor signaling pathway, including the transcription factors such as the Casp family and TRAF family. In conclusion, the density and chlorophyll a content of zooxanthella maintained a fading tendency induced by the macroalgae at ambient temperatures. The oxidative stress and immune response levels of the coral was elevated at 30 °C, but the macroalgae alleviated the negative effects triggered by thermal stress.
Collapse
Affiliation(s)
- Jian-Rong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Ping Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Ocean Science and Engineering, Zhanjiang 524025, China
- Correspondence:
| |
Collapse
|