1
|
Li Y, He P, Zhang H, Lü F. A critical review of in-situ moisture distribution detection and characterization techniques utilizing deep dewatering for organic waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123710. [PMID: 39700926 DOI: 10.1016/j.jenvman.2024.123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Deep dewatering is crucial for effectively reducing the volume of organic waste and facilitating its downstream transportation and disposal. An in-depth understanding of the occurrence states, composition, and morphological characteristics of moisture in organic waste is the basis for optimizing the dewatering process, improving dewatering efficiency, and reducing energy consumption. Given the common problems of time-consuming, low sensitivity, and poor parallelism of traditional methods, this work reviews the advanced in-situ analysis methods for moisture distribution of organic waste. The Raman microscopy imaging technique is highlighted to provide a new approach for visualizing the spatial distribution of moisture with different binding strengths in solid flocs. Various physical, chemical, and biological characteristics and characterization methods of organic waste related to deep dewatering are introduced, and they are correlated with conditioning methods. Almost all conditioning will cause changes in the physical characteristics of organic waste, while the improvement of dewatering performance is actually caused by changes in the chemical composition and biological characteristics of the matrix, and these characteristics are intrinsically related to the moisture distribution. The characterization and in-situ moisture detection methods presented in this work aim to support future studies in understanding changes in material composition related to improving dewatering performance and further clarifying the mechanisms of deep dewatering of organic wastes.
Collapse
Affiliation(s)
- Yuanxin Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314000, China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314000, China.
| |
Collapse
|
2
|
Xiao T, Zhang L, Dong B, Xu Z. Effect of dissolved ozone flotation thickening process on coliform bacteria and antibiotics simultaneous abatement: A pilot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169506. [PMID: 38123084 DOI: 10.1016/j.scitotenv.2023.169506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
This study focused on the removal of the total coliforms, fecal coliforms and four target antibiotics in the dissolved ozone flotation (DOF) thickening sludge process. Additionally, the thickened effluent chromaticity and its effect on thickened sludge hydrolysis process were investigated. Ozonation in the DOF process could inactivate coliforms by oxidizing cellular components and destroying genetic material, as well as altering the chemical structure of antibiotics, leading to the degradation of antibiotics. At an O3 dosage of 16 mg/g TS, the concentration of total coliforms and fecal coliforms decreased by 2.2 log and 2.4 log, corresponding to an overall removal rate of 99.4 % and 99.7 %, respectively. The total degradation rate of four target antibiotics (tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL)) were 66.5 %, 68.8 %, 53.3 % and 57.5 %, respectively. The chromaticity removal rate of the thickened effluent reached 95 %. Analysis of fluorescence spectra indicated alterations in the fluorescence properties of dissolved organic matter, resulting in a decrease in fluorescence intensity by ozonation. The thickened sludge had higher hydrolysis rates, resulting in a greater production of volatile fatty acids (VFAs). This was mainly attributed to the increased amount of soluble protein and carbohydrate in the substrate after DOF treatment, which was more conducive for the rapid conversion of hydrolysis into VFAs during the initial stage. These results provided new ideas for upgrading and transforming the thickening process of wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingjun Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Chen S, Chen J, Wang X, Li J, Dong B, Xu Z. Footprints of total coliforms, faecal coliforms and E. coli in a wastewater treatment plant and the probabilistic assessment and reduction of E. coli infection risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165845. [PMID: 37506894 DOI: 10.1016/j.scitotenv.2023.165845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Wastewater contains various pathogenic microorganisms, and the disease of workers caused by exposure to wastewater at the wastewater treatment plants (WWTPs) is a growing concern. The footprints of total coliforms (TC), faecal coliforms (FC) and Escherichia coli (E. coli) in a conventional activated sludge WWTP during 12 consecutive months were clarified. It was found that TC, FC and E.coli in influent were significantly removed (log 4.71, log 4.43 and log 4.62, respectively) by WWTP with sand filtration playing a key role, and excess sludge was a major potential pathway for them flowing to the environment. Through quantitative microbial risk assessment (QMRA), hand-to-mouth ingestion of untreated wastewater and wastewater in secondary/efficient sedimentation tanks, as well as accidental ingestion of sludge in dewatering workshop presented the highest infection risks of pathogenic E.coli in the WWTP, considerably exceeded the U.S. EPA benchmark (≤1 × 10-4 pppy). PPE application and E.coli concentration reduction in wastewater or sludge were recommended to reduce the infection risks at these stages. Further, partial ozonation and dissolved ozone flotation thickening were investigated able to reduce the infection risks at the stages of secondary and tertiary treatment of wastewater or sludge treatment by 90- 98 %. The findings of this study would assist in selecting appropriate processes for the further sanitation of WWTPs.
Collapse
Affiliation(s)
- Sisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jiangfeng Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China
| | - Ji Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
4
|
Xiao T, Wang H, Wang X, Wu H, Yuan S, Dai X, Dong B. New strategy of drinking water sludge as conditioner to enhance waste activated sludge dewaterability: Collaborative disposal. WATER RESEARCH 2023; 233:119761. [PMID: 36841166 DOI: 10.1016/j.watres.2023.119761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Drinking water sludge (DWS) and waste activated sludge (WAS) are usually treated separately. With the continuous deepening understanding of the characteristics of two types sludge, the research and application of the collaborative disposal is worth considering. The heated modification DWS (HDWS) rich in inorganic matter and aluminum (Al2O3) can be used as a conditioner to enhance WAS dewaterability using its properties with physical skeleton and chemically catalyzed ozone (O3). The results showed that the minimum values of capillary water time (CST) and specific resistance filtration (SRF) for WAS were 20.9±2.40 s and 1.07±0.19×1013 m/kg at pH=4, O3 dosage=60 mg/g VS and HDWS dosage=700 mg/g VS, corresponding to the reduction of sludge cake water content (Wc) to 60.37±0.97 %. The mechanism of HDWS+O3 enhanced WAS dewaterability was systematically elucidated through pyridine-infrared analysis and density functional theory (DFT) calculations. The surface of Al2O3 in HDWS had more Lewis acidic sites, and the oxygen atoms of O3 combined with Al atoms to form Al-O bonds and undergo electron transfer, while O3 molecules dissociated to produce more hydroxyl radicals (·OH). With the oxidation of ·OH, the extra-microcolony/cellular polymers (EMPS/ECPS) structure were destroyed and became looser, promoting the conversion of internal moisture to free moisture. Zeta potential tended to zero, particle size increased, and the surface was more hydrophobic. Correlation analysis revealed that the component content, protein (PN) secondary structure and molecular weight (MW) in ECPS were positively and more strongly correlated with the sludge dewaterability compared to EMPS. The discovery of HDWS+O3 applied to effectively enhance WAS dewaterability provided an inspiring perspective on the emerging DWS and WAS co-processing disposition.
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Haibin Wu
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| |
Collapse
|