1
|
Yang B, Zhao J, Zhang C, Guo S, Chen Y, Wang Y, Huang X, Zeng Q. Ultra-high capacity and selectivity for uranium fixation by carbon nanosphere supported hydroxyapatite nanorod adsorbent. J Colloid Interface Sci 2025; 688:478-489. [PMID: 40020486 DOI: 10.1016/j.jcis.2025.02.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Uranium (U(VI)) has chemical and radiological toxicity, so the effective treatment of uranium-containing wastewater is crucial for both environmental safety and human health. Here, a carbon nanosphere (CNS) supported hydroxyapatite (HAP) nanorod (HAP/CNS) adsorbent was prepared using a simple glucose-assisted hydrothermal method toeffectively immobilize U(VI). Glucose not only derived CNS, but also facilitated HAP crystallization, prohibited HAP aggregation, and introduced oxygen-containing functional groups (i.e., COOH). The optimized HAP/CNS possessed a fantastic adsorption capability of 3080.3 mg/g for U(VI), nearly three times that of HAP and much higher than many reported HAP-based adsorbents. Notably, HAP/CNS was less affected by coexisting ions (distribution coefficient, Kd, researched 6.0 × 104 mL/g) and humic acid, and maintained good capability for real wastewater. The pseudo-second-order kinetic model and Langmuir isotherm model could better explain U(VI) removal behavior by HAP/CNS. Results showed that HAP/CNS and UO22+ combined to form a new uranium-containing compound, i.e., calcium-uranium mica (Ca(UO2)2(PO4)2·3H2O) via ion exchange and dissolution-precipitation, which should be the main reason for the ultra-high capacity and selectivity of HAP/CNS. Additionally, the hydrophilic oxygen-containing functional groups synergistically facilitated U(VI) fixation through complexation. This work introduces a superior adsorbent for purifying uranium-contaminated wastewater and elucidates its synergetic mechanism in uranium fixation.
Collapse
Affiliation(s)
- Bing Yang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jingjing Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chao Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Shuaishuai Guo
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yanlin Chen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yi Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Xixian Huang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Hu J, Zhang J, Chang J, Liao Y, Gao H, Fu H. Constructing Stable Nitrogen-Rich Core-Shell CdS@MC for Photocatalytic Reduction of U(VI) in Air without Sacrificial Agent. Inorg Chem 2024; 63:19991-20002. [PMID: 39388101 DOI: 10.1021/acs.inorgchem.4c03567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Photocatalytic reduction of uranium from U(VI) to U(IV) has been recognized as an effective treatment method for uranium wastewater. However, most photocatalysts have to be reduced under inert gas and sacrificial agent. Here, a class of nitrogen-rich core-shell photocatalysts (CdS@MC) with high stability was successfully prepared by modifying CdS with melamine and cyanuric chloride condensation. When the initial concentration of U(VI) was 100 mg/L and the solid-liquid ratio was 0.2 g/L, the removal of U(VI) by CdS@MC without sacrificial agent under air could reached 95%. The removal rate was still above 80% after five cycles with good stability and good removal rate of U(VI) at high salt concentration. CdS@MC not only efficiently generates electrons for photocatalytic reduction of U(VI), but also generates H2O2 from O2, which then reacts with uranyl ions to produce metastudtite. This study provides a new direction for the study of efficient uranium removal photocatalysts without sacrificial agent in air environment.
Collapse
Affiliation(s)
- Jiaxin Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637000, China
| | - Juan Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637000, China
| | - Jinming Chang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637000, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637000, China
| | - Hejun Gao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637000, China
| | - Hongquan Fu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637000, China
| |
Collapse
|
3
|
Jiang J, Hou R, Cui H, Tang Z, Yousif Abdellah YA, Chater CCC, Cheng K, Yu F, Liu D. Removal of artificial sweeteners in wastewater treatment plants and their degradation during sewage sludge composting with micro- and nano-sized kaolin. BIORESOURCE TECHNOLOGY 2024; 406:131060. [PMID: 38950831 DOI: 10.1016/j.biortech.2024.131060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
This study surveyed the fates of artificial sweeteners in influent, effluent, and sewage sludge (SS) in wastewater treatment plant, and investigated the effects of Micro-Kaolin (Micro-KL) and Nano-Kaolin (Nano-KL) on nitrogen transformation and sucralose (SUC) and acesulfame (ACE) degradation during SS composting. Results showed the cumulative rate of ACE and SUC in SS was ∼76 %. During SS composting, kaolin reduced NH3 emissions by 30.2-45.38 %, and N2O emissions by 38.4-38.9 %, while the Micro-KL and Nano-KL reduced nitrogen losses by 14.8 % and 12.5 %, respectively. Meanwhile, Micro-KL and Nano-KL increased ACE degradation by 76.8 % and 84.2 %, and SUC degradation by 75.3 % and 77.7 %, and significantly shifted microbial community structure. Furthermore, kaolin caused a positive association between Actinobacteria and sweetener degradation. Taken together, kaolin effectively inhibited nitrogen loss and promoted the degradation of ACE and SUC during the SS composting, which is of great significance for the removal of emerging organic pollutants in SS.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Rui Hou
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huilin Cui
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhuyu Tang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousif Abdelrahman Yousif Abdellah
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ke Cheng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
4
|
Chen C, Liu X, Tian X, Feng J, Liu Y, Song M, Zhu W, Zhang Y. The efficient uptake of uranium by amine-functionalized β-cyclodextrin supported fly ash composite from polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172342. [PMID: 38608905 DOI: 10.1016/j.scitotenv.2024.172342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
A novel polyethyleneimine/polydopamine-functionalized β-cyclodextrin supported fly ash adsorbent (PEI/PDA/β-CD/FA) had been synthesized to uptake uranium from polluted water. At pH = 5.0 and T = 298 K, the uranium uptake efficiency and capacity of PEI/PDA/β-CD/FA reached to 98.7 % and 622.8 mg/g, respectively, which were much higher than those of FA (71.4 % and 206.7 mg/g).The excellent uranium uptake properties of PEI/PDA/β-CD/FA could be explained by three points: (1) using β-CD as a supporting material could effectively avoid the aggregation of FA and improve the hydrophily of FA; (2) the unique cavity structure of β-CD could form chelates with uranyl ions; (3) the formation of PEI/PDA co-deposition coating on FA further enhanced the affinity of FA to UO22+. With the presence of interfering ions, the uptake efficiency of PEI/PDA/β-CD/FA for uranium was still up to 94.5 % after five cycles, indicating the high selectively and recoverability of PEI/PDA/β-CD/FA. In terms of the results of characterizations, uranium was captured by PEI/PDA/β-CD/FA via electrostatic attraction, hydrogen bond, coordination and complexation. To sum up, PEI/PDA/β-CD/FA was expected to be used for actual sewage treatment owing to its excellent uranium uptake efficiency/capacity, selectivity, cycle stability and feasibility of actual application.
Collapse
Affiliation(s)
- Congcong Chen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiaqi Feng
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yujia Liu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mingjun Song
- The 210(th) Institute of the Sixth Academy of CASIC, Xian 710065, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
5
|
Li Y, Dai Y, Dai W, He F, Li Z, Zhong X, Tao Q. Bifunctional solid-state ionic liquid supported amidoxime chitosan adsorbents for Th(IV) and U(VI): Enhanced adsorption capacity from the synergistic effect. Int J Biol Macromol 2024; 257:128708. [PMID: 38096930 DOI: 10.1016/j.ijbiomac.2023.128708] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Uranium and thorium of symbiotic relationship commonly appear in one kind of raw or spent ore. The simultaneous enrichment toward both metals in the first step is essential during many hydrometallurgy processing. Therefore bifunctional solid-state ionic liquid supported amidoxime chitosan (ACS) adsorbents were developed to simultaneously adsorb the two metal from the aqueous solution. The adsorption capacity of the bifunctional adsorbents toward uranium and thorium were significantly superior to the ionic liquid-free amidoxime chitosan, obviously proving the synergistic effect. For both uranium and thorium, the adsorption capacity in the consequence of ACS-[N4444][DEHP], ACS-[N4444][EHEHP], ACS-[N1888][DEHP] and ACS-[N1888][EHEHP] prove the steric effect and PO bonding played important roles in the adsorption. Study on isotherms and kinetics demonstrated the adsorption of ionic liquid-ACS adopted monolayer and chemical way. The ΔGo of very small negative values highlighted ionic liquid-ACS were prone to adsorb uranium and thorium. The study showed feasibility of bifunctional solid-state ionic liquid supported amidoxime chitosan adsorbents for Th(IV) and U(VI).
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Materials, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Ying Dai
- School of Chemistry and Materials, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Wei Dai
- School of Chemistry and Materials, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Feiqiang He
- School of Chemistry and Materials, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Zhuyao Li
- School of Chemistry and Materials, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Xing Zhong
- School of Chemistry and Materials, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Qinqin Tao
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
6
|
Sun F, Wang D, Hu Q, Jiao R, Zhang J, Li N, Li J. Hydrolyzed Hydrated Titanium Oxide on Laser-Induced Graphene as CDI Electrodes for U(VI) Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:704-713. [PMID: 38109847 DOI: 10.1021/acs.langmuir.3c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Recently, laser-induced graphene (LIG), which has been successfully applied in CDI technology (directly without a complex preparation process), has gained considerable attention. However, the raw LIG electrode with a limited number of active sites exhibits low adsorption efficiency. Therefore, the search for a suitable and effective method to modify LIG to improve its electroadsorption performance is significant. Herein, a very simple titration hydrolysis method is adopted to modify LIG, resulting in a layer of hydrated titanium oxide (HTO) being synthesized on the surface of LIG. The LIG/HTO composites possess a good adsorption property since covering the surface of LIG with a layer of HTO can greatly improve the adsorption capacity of LIG. Moreover, with the addition of HTO, not only the proton transfer ability of LIG has been enhanced but also considerable specific capacitance has been enlarged. As a result, LIG/HTO composite as CDI electrode displays a maximum theoretical adsorption capacity of 1780.89 mg/g at 1.2 V, and the capacitance of LIG/HTO composite material is 4.74 times higher than LIG. During the electroadsorption process, Ti4+ is reduced to Ti3+ under external voltage, and O2- is produced through oxidation. Meanwhile, part of the U (VI) is hydrolyzed into UO3·2H2O under the action of -OH, and some combine with O2- to produce UO4·4H2O.
Collapse
Affiliation(s)
- Fuwei Sun
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - De Wang
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qinyan Hu
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ranran Jiao
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianfeng Zhang
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jiaxing Li
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
7
|
Li H, Song J, Ma C, Shen C, Chen M, Chen D, Zhang H, Su M. Uranium recovery from weakly acidic wastewater using recyclable γ-Fe 2O 3@meso-SiO 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119347. [PMID: 37897898 DOI: 10.1016/j.jenvman.2023.119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
U(VI)-containing acidic wastewater produced from uranium mining sites is an environmental hazard. Highly efficient capture of U(VI) from such wastewater is of great significance. In this study, a mesoporous core-shell material (i.e. γ-Fe2O3@meso-SiO2) with magnetically and vertically oriented channels was rationally designed through a surfactant-templating method. Batch experiment results showed that the material had an efficiency level of >99.7% in removing U(VI) and a saturated adsorption capacity of approximately 41.40 mg/g, with its adsorption reaching equilibrium in 15 min. The U(VI) adsorption efficiency of the material remained above 90% in a solution with competing ions and in acidic radioactive wastewater, indicating its ability to selectively adsorb U(VI). The material exhibited high adsorption efficiency and desorption efficiency in five cycles of desorption and regeneration experiments. According to the results, the mechanism through which γ-Fe2O3@meso-SiO2 adsorbs U(VI) was dominated by chemical complexation and electrostatic attraction between these two substances. Therefore, γ-Fe2O3@meso-SiO2 is not only beneficial to control the environmental migration of uranium, but also has good selective adsorption and repeated regeneration performance when used to recover U(VI) from weakly acidic wastewater in uranium mining.
Collapse
Affiliation(s)
- Hong Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Juexi Song
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, Shandong, China
| | - Chuqin Ma
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Congjie Shen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Miaoling Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
8
|
Zhang Y, Huang S, Mei B, Tian X, Jia L, Sun N. Magnetite/β-cyclodextrin/fly ash composite as an effective and recyclable adsorbent for uranium(VI) capture from wastewater. CHEMOSPHERE 2023; 331:138750. [PMID: 37105305 DOI: 10.1016/j.chemosphere.2023.138750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
As a novel adsorbent for the separation of uranium(VI) from wastewater, Magnetite/β-cyclodextrin/fly ash composite (Fe3O4/β-CD/FA) was first prepared via a chemical coprecipitation technology. The characterization results indicated that Fe3O4 and β-CD had been successfully loaded on FA, which had brought abundant oxygen-containing functional groups, providing numerous adsorptive sites for the removal of uranium(VI). At pH = 5.0 and T = 25 °C, the maximum uranium(VI) removal efficiency and capacity of Fe3O4/β-CD/FA were higher to 97.8% and 444.4 mg g-1, respectively. Pseudo-second-order and Langmuir models fitted better with the experimental data, illustrating that chemical adsorption dominated the uranium(VI) removal process. In addition, Fe3O4/β-CD/FA showed good anti-interference ability and recoverability. After five cycles, the removal rate of uranium(VI) on Fe3O4/β-CD/FA was still higher to 90.4%. The immobilization of uranium(VI) on Fe3O4/β-CD/FA was mainly ascribed to the synergism of redox reaction, complex reaction, chemical reaction and electrostatic interaction. Given the above, Fe3O4/β-CD/FA would be regarded as an efficacious, green and promising adsorbent for uranium(VI) separation from wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Sun
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
9
|
Wang C, Wang G, Xie S, Dong Z, Zhang L, Zhang Z, Song J, Deng Y. Phosphorus-rich biochar modified with Alcaligenes faecalis to promote U(VI) removal from wastewater: Interfacial adsorption behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131484. [PMID: 37156195 DOI: 10.1016/j.jhazmat.2023.131484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Phosphorus-rich biochar (PBC) has been extensively studied due to its significant adsorption effect on U(VI). However, the release of phosphorus from PBC into solution decreases its adsorption performance and reusability and causes phosphorus pollution of water. In this study, Alcaligenes faecalis (A. faecalis) was loaded on PBC to produce a novel biocomposite (A/PBC). After adsorption equilibrium, phosphorus released into solution from PBC was 2.32 mg/L, while it decreased to 0.34 mg/L from A/PBC (p < 0.05). The U(VI) removal ratio of A/PBC reached nearly 100%, which is 13.08% higher than that of PBC (p < 0.05), and it decreased only by 1.98% after 5 cycles. When preparing A/PBC, A. faecalis converted soluble phosphate into insoluble metaphosphate minerals and extracellular polymeric substances (EPS). And A. faecalis cells accumulated through these metabolites and formed biofilm attached to the PBC surface. The adsorption of metal cations on phosphate further contributed to phosphorus fixation in the biofilm. During U(VI) adsorption by A/PBC, A. faecalis synthesize EPS and metaphosphate minerals by using the internal components of PBC, thus increasing the abundance of acidic functional groups and promoting U(VI) adsorption. Hence, A/PBC can be a green and sustainable material for U(VI) removal from wastewater.
Collapse
Affiliation(s)
- Chenxu Wang
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Guohua Wang
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Shuibo Xie
- School of Civil Engineering, University of South China, Hengyang 421001, China; Key Discipline Laboratory for National Defense of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Zhitao Dong
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Lantao Zhang
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Zhiyue Zhang
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Jian Song
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yibo Deng
- School of Civil Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
10
|
Adsorption performance and mechanism of U(VI) in aqueous solution by hollow microspheres Bi2WO6. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|