1
|
Xian L, Lu D, Yang Y, Feng J, Fang J, Jacobs DF, Wu D, Zeng S. Effects of woodland slope on heavy metal migration via surface runoff, interflow, and sediments in sewage sludge application. Sci Rep 2024; 14:13468. [PMID: 38867064 PMCID: PMC11169265 DOI: 10.1038/s41598-024-64163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Sewage sludge (SS) application to forest plantation soils as a fertilizer and/or soil amendment is increasingly adopted in plantation forest management. However, the potential risks of SS-derived heavy metals (HMs) remain a concern. Many factors, including woodland slope may affect the risks, but the understanding of this issue is limited. This research evaluated the HMs migration via surface runoff, interflow, and sediments when SS was applied in woodlands of varying slopes. We conducted indoor rainfall simulations and natural rainfall experiments to clarify the effect of slope on the migration of HMs via runoff (including surface and interflow) and sediments. In the simulated rainfall experiment, HMs lost via sediments increased by 9.79-27.28% when the slope increased from 5° to 25°. However, in the natural rainfall experiment, when the slope of forested land increased from 7° to 23°, HMs lost via surface runoff increased by 2.38% to 6.13%. These results indciate that the surface runoff water on a high slope (25°) posed high water quality pollution risks. The migration of HMs via surface runoff water or interflow increased as the steepness of the slope increased. The total migration of Cu, Zn, Pb, Ni, Cr and Cd via sediment greatly exceeded that via surface runoff and interflow. Particles ≤ 0.05 mm contributed the most to the ecological risks posed by sediments. Cd was the main source of potential ecological risks in sediments under both experimental conditions.
Collapse
Affiliation(s)
- Lihua Xian
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Dehao Lu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuantong Yang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiayi Feng
- Guangdong Eco-Engineering Polytechnic, Guangzhou, Guangdong, China
| | - Jianbo Fang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, USA
| | - Daoming Wu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shucai Zeng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Narayan A, Diogo BS, Mansilha C, Espinha Marques J, Flores D, Antunes SC. Assessment of ecotoxicological effects of Fojo coal mine waste elutriate in aquatic species (Douro Coalfield, North Portugal). FRONTIERS IN TOXICOLOGY 2024; 6:1334169. [PMID: 38465195 PMCID: PMC10920227 DOI: 10.3389/ftox.2024.1334169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: The exploitation of anthracite A in the Pejão mining complex (Douro Coalfield, North Portugal) resulted in the formation of several coal waste piles without proper environmental control. In 2017, a new pedological zonation emerged in the Fojo area, after the ignition and self-burning of some of the coal waste piles, namely: unburned coal waste (UW); burned coal waste, and a cover layer (BW and CL, respectively); uphill soil (US); mixed burned coal waste (MBW); downhill soil (DS). This study aimed to evaluate the toxic effects of 25 soil elutriates from different pedological materials. Methods: Allivibrio fischeri bioluminescence inhibition assay, Lemna minor growth inhibition assay, and Daphnia magna acute assay were used to assess the toxicity effects. Additionally, total chlorophyll and malondialdehyde (MDA) content and catalase (CAT) activity were also evaluated in L. minor. Results and Discussion: The results obtained from each endpoint demonstrated the extremely heterogeneous nature of soil properties, and the species showed different sensibilities to soil elutriates, however, in general, the species showed the same sensitivity trend (A. fischeri > L. minor > D. magna). The potentially toxic elements (PTE) present in the soil elutriates (e.g., Al, Pb, Cd, Ni, Zn) affected significantly the species understudy. All elutriates revealed toxicity for A. fischeri, while US1 and UW5 were the most toxic for L. minor (growth inhibition and significant alterations in CAT activity) and D. magna (100% mortality). This study highlights the importance of studying soil aqueous phase toxicity since the mobilization and percolation of bioavailable PTE can cause environmental impacts on aquatic ecosystems and biota.
Collapse
Affiliation(s)
- Aracelis Narayan
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Bárbara S. Diogo
- Instituto Ciências Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Matosinhos, Portugal
| | - Catarina Mansilha
- Department of Environmental Health, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Jorge Espinha Marques
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Deolinda Flores
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Sara C. Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
3
|
Guo R, Ren R, Wang L, Zhi Q, Yu T, Hou Q, Yang Z. Using machine learning to predict selenium and cadmium contents in rice grains from black shale-distributed farmland area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168802. [PMID: 38000759 DOI: 10.1016/j.scitotenv.2023.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Cadmium (Cd) and selenium (Se) are widely enriched in soil at black shale outcropping areas, with Cd levels exceeding the standard (2.0 mg/kg in 5.5 < pH ≤ 6.5) commonly. The prevention of Cd hazards and the safe development of Se-rich land resources are key issues that need to be urgently addressed. To ensure safe utilization of Se-rich land in the CdSe coexisting areas, 158 rice samples, their corresponding rhizosphere soils, and 8069 topsoil samples were collected and tested in the paddy fields of Ankang City, Shaanxi Province, where black shales are widely exposed. The results showed that 43 % of the topsoil samples were Se-rich soil (Se > 0.4 mg/kg) wherein 79 % and 3 % of Cd concentrations exceeded the screening value and control value, respectively, according to the GB15618-2018 standard. Meanwhile, 63 % of the rice samples were Se rich (Se > 0.04 mg/kg) and the Cd content exceeded the prescribed limit (0.2 mg/kg) in Se-rich rice by 26 %. There was no significant positive correlation between the Se and Cd contents in the rice grains and the Se and Cd contents in the corresponding rhizosphere soil. The factors influencing Se and Cd uptake in rice were SiO2, CaO, P, S, pH, and TFe2O3. Accordingly, an artificial neural network (ANN) and multiple linear regression model (MLR) were used to predict Cd and Se bioaccumulation in rice grains. The stability and accuracy of the ANN model were better than those of the MLR model. Based on survey data and the prediction results of the ANN model, a safe planting zoning of Se-rich rice was proposed, which provided a reference for the scientific planning of land resources.
Collapse
Affiliation(s)
- Rucan Guo
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Rui Ren
- Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center, Xi'an 710068, PR China; Health Geological Research Center of Shaanxi Province, Xi'an 710068, PR China
| | - Lingxiao Wang
- School of Science, China University of Geosciences, Beijing 100083, PR China
| | - Qian Zhi
- Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center, Xi'an 710068, PR China; Health Geological Research Center of Shaanxi Province, Xi'an 710068, PR China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, PR China; Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China.
| | - Qingye Hou
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China; Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China; Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China.
| |
Collapse
|
4
|
Huang Z, Li F, Cui W, Cao G, Yao J. Simulating arsenic discharge flux at a relic smelting site in Guangxi Zhuang Autonomous Region, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12094-12111. [PMID: 38225495 DOI: 10.1007/s11356-023-31695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Anthropogenic groundwater arsenic (As) pollution is common in many aquifers in Southwest China. It is concerned that long-term random disposal of As smelting slag could induce the transport of high-As groundwater into previously uncontaminated aquifers. Here, we used HELP-MODFLOW-MT3DMS model simulations to integrate the percolation, groundwater flow, and solute transport processes at an aquifer at site scale, constrained by weather, hydrogeology, and monitoring data. Our simulations provide a new method framework of the simulated percolation by HELP model and have induced As spatiotemporal distribution in the aquifer. According to the HELP model simulation results, percolation volume accounts for 24% of rainfall over 18 years. This work determined that the As discharge trend was fitted by double-constants kinetics based on the leaching experiment. And this work calculates total mass distribution of As in the aquifer over 18 years. We have found that the sustained As pollution relies on the rainfall that acts as the primary contributor of elevated As concentrations. Model simulation results suggest that 51.70% of the total As mass (1.96 × 104 kg) was fixed in low permeability solid media. The total As mass discharged into groundwater reached 9.3 × 103 kg, accounting for 24.68%. The accumulative outflow mass of arsenic was 8.0 × 103 kg, accounting for 21.62%.
Collapse
Affiliation(s)
- Zhenzhong Huang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Fengyan Li
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Weihua Cui
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| | - Guoliang Cao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| |
Collapse
|
5
|
Kicińska A, Pomykała R. Incongruent dissolution of silicates and its impact on the environment: an example of a talc mine. Sci Rep 2023; 13:22519. [PMID: 38110668 PMCID: PMC10728135 DOI: 10.1038/s41598-023-50143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023] Open
Abstract
The paper analyzes the process of incongruent dissolution of silicates taking place in close proximity to a talc mine. The chemical and phase composition as well as the concentrations and mobility of potentially toxic elements (PTE) in research material with varying levels of weathering were determined using instrumental (XRF, XRD) and chemical methods (extractions: BCR, aqua regia, water leaching, 0.05 M EDTA). It was demonstrated that the predominant minerals in the weathering crust include weathering-resistant minerals (i.e. quartz and muscovite) and secondary minerals (kaolinite, illite and interstratified minerals, vermiculite/chlorite) and that the predominant processes are hydrolysis and oxidation. The weathering process has an impact on the complexity of the chemical and mineral composition and the diverse structure of the weathering crust. A layer of Fe and Al oxides and hydroxides forms in the upper part of the weathering crust, while the amount of silica decreases. Low-mobility elements (i.e. Si, Al and Fe) react on the phase separation surface, causing the formation of clay minerals (i.e. vermiculite, montmorillonite) or Al and Fe hydroxides (e.g. goethite). The duration of weathering causes an increase in the content of PTEs in solid materials: multifold in the case of Cr (15), Ba (9), Pb (7), Zn (6) and considerably lower in the case of V (1.3), Sr (0.8) and Co (0.4). It was demonstrated that PTEs co-occur in several chemical fractions in the weathering crust and that the highest share of their total concentration are cations incorporated in the crystal lattice of minerals and bound by strong crystalline bonds (F4 46%). The lowest share was observed for the reducible fraction (9%) and the share of the oxidizable fraction was 29% The most mobile cations connected by the weakest bonds comprised only 16% of the total concentration. Based on the content of the readily soluble fraction of PTEs, it was concluded that the degree of weathering does not increase the environmental risk, but actually reduces it for Cr, Cr and Pb. The obtained Ecological Risk Index (ERI) values indicate that the ecological risk associated with the elements tested is low for the entire area, which means that natural weathering processes do not have any impact on environmental pollution.
Collapse
Affiliation(s)
- Alicja Kicińska
- Faculty of Geology, Geophysics and Environmental Protection, Department of Environmental Protection, AGH University of Krakow, Mickiewicza 30 Av., 30-059, Kraków, Poland.
| | - Radosław Pomykała
- Faculty of Mining and Geoengineering, Department of Environmental Engineering, AGH University of Krakow, Mickiewicza 30 Av., 30-059, Kraków, Poland
| |
Collapse
|
6
|
Li F, Yu T, Huang Z, Yang Z, Hou Q, Tang Q, Liu J, Wang L. Linking health to geology-a new assessment and zoning model based on the frame of medical geology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7145-7159. [PMID: 36862270 DOI: 10.1007/s10653-023-01516-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
With the growing concerns about the Earth's environment and human health, there has been a surge in research focused on the intersection of health and geology. This study quantitatively assesses the relationship between human health and geological factors using a new framework. The framework considers four key geological environment indicators related to health: soil, water, geological landform, and atmosphere. Results indicate that the atmospheric and water resource indicators in the study area were generally favorable, while the scores of geological landforms varied based on topography. The study also found that the selenium content in the soil greatly exceeded the local background value. Our research underscores the importance of geological factors on human health, establishes a new health-geological assessment model, and provides a scientific foundation for local spatial planning, water resource development, and land resource management. However, due to varying geological conditions worldwide, the framework and indicators for health geology may need to be adjusted accordingly.
Collapse
Affiliation(s)
- Fengyan Li
- School of Science, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing, 100083, People's Republic of China.
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China.
| | - Zhenzhong Huang
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Zhongfang Yang
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Qingye Hou
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Qifeng Tang
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, People's Republic of China
| | - Jiuchen Liu
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, People's Republic of China
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, People's Republic of China
| | - Lingxiao Wang
- School of Science, China University of Geosciences, Beijing, 100083, People's Republic of China
| |
Collapse
|
7
|
Li M, Yang B, Ju Z, Qiu L, Xu K, Wang M, Chen C, Zhang K, Zhang Z, Xiang S, Zheng J, Yang B, Huang C, Zheng D. Do high soil geochemical backgrounds of selenium and associated heavy metals affect human hepatic and renal health? Evidence from Enshi County, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163717. [PMID: 37116803 DOI: 10.1016/j.scitotenv.2023.163717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
It is unclear whether the United States Environmental Protection Agency (US EPA) method can accurately assess heavy metal risks in high-Se areas. Herein, a black shale outcropping in Enshi County, China, was taken as the study area, and a carbonate outcropping in Lichuan County was the control area. Selenium and associated heavy metal concentrations in rock, soil, rice, human blood and urine samples and human sensitive hepatic and renal biomarkers were measured. The results showed that the contents of selenium, cadmium, molybdenum and copper in the study area were 3.68 ± 2.72 μg/g, 2.65 ± 1.42 μg/g, 16.3 ± 15.5 μg/g, and 57.3 ± 17.6 μg/g, respectively, in soil (n = 47) and 1.072 ± 0.924 μg/g, 0.252 ± 0.310 μg/g, 2.800 ± 2.167 μg/g, and 10.91 ± 27.42 μg/g, respectively, in rice (n = 47). The daily adult intake levels of selenium, cadmium and molybdenum from rice consumption in the study area (exposure group) exceed the recommended tolerance values in China. According to the US EPA method, these environmental media pose a significant risk to human health. However, in the exposure group (n = 111), the median levels of the sensitive hepatic biomarkers alanine aminotransferase (18 U/L), aspartate aminotransferase (28 U/L) and total bilirubin (10.9 μmol/L) and the sensitive renal biomarkers serum creatinine (70.1 μmol/L), urinary nitrogen (5.73 mmol/L) and uric acid (303.80 μmol/L) were within reference ranges and had values equivalent to those of the control group (P > 0.05). The elements tended to differentiate during migration from one medium to another. Due to the complex interaction between selenium and heavy metals, a survey of human health indicators is indispensable when the US EPA method is used to assess the heavy metal risks in high-Se areas. The recommended molybdenum tolerable intake in the U.S. (2000 μg/d) is reasonable based on a comparison.
Collapse
Affiliation(s)
- Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China; Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China; Hubei Key Laboratory of resources and eco-environmental geology, Wuhan 430022, China.
| | - Boyong Yang
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Zhaoqing Ju
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Liang Qiu
- School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| | - Keyuan Xu
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Minghua Wang
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Can Chen
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Kai Zhang
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Zixiong Zhang
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Sufang Xiang
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Jinlong Zheng
- Hubei Key Laboratory of resources and eco-environmental geology, Wuhan 430022, China
| | - Baohong Yang
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Chuying Huang
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China; Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi 445000, China.
| | - Deshun Zheng
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
8
|
Zhang F, Li C, Shi Y, Meng L, Zan F, Wu X, Wang L, Sheng A, Crittenden JC, Chen J. Evaluation on leachability of heavy metals from tailings: risk factor identification and cumulative influence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64565-64575. [PMID: 37072593 DOI: 10.1007/s11356-023-26933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The leachability of heavy metals (HMs) in tailings is significantly affected by multivariate factors associated with environmental conditions. However, the leaching patterns of HMs in molybdenum (Mo) tailings due to environmental change and cumulative influences of multi-leaching factors remain unclear. The leaching behaviors of HMs in Mo tailings were studied through static leaching tests. The key leaching factors were discussed via simulating acid rain leaching scenario in terms of global and local environmental conditions. The potential risk factors were identified, and their cumulative influences on the leachability of HMs were evaluated with boosted regression trees (BRT) and generalized additive model (GAM) analyses. Environmental factors showed interactive effects on the leachability of HMs in tailings. The leachability of HMs in tailings decreased significantly with the interaction of increasing liquid/solid (L/S) ratio and pH. Rebound of leachability was observed with high L/S ratio (> 60) and long-time leaching (> 30 h). L/S ratio and pH were the most sensitive factors to the leachability of HMs with the corresponding contribution of 40.8% and 27.1%, respectively, followed by leaching time and temperature (~ 16%). The total contribution of global climate-associated factors, i.e., L/S ratio, leaching time, and temperature to the leachability of HMs was up to 70%, while leachate pH shared the other 30%. With the increase of persistent heavy rain in summer globally, As and Cd were found to having higher leaching risks than the other HMs in tailings, although an obvious decrease in their leachability was obtained due to the improvement of acid rain pollution in China. The study provides a valuable method for the identification of potential risk factors and their associations with the leaching behaviors of HMs in tailings under the background of obvious improvement on acid rain pollution in China and global climate change.
Collapse
Affiliation(s)
- Fengjiao Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Chunping Li
- Zhejiang Hong Shi Environmental Protection Co, Ltd, Shanghua Road, Lanxi, 321100, China
| | - Yao Shi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Lingkun Meng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Anxu Sheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
9
|
Metal Fractionation and Leaching in Soils from a Gold Mining Area in the Equatorial Rainforest Zone. J CHEM-NY 2023. [DOI: 10.1155/2023/3542165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
In this article, a modified BCR procedure and a column leaching test were used to examine the bioavailability and mobility of heavy metals in soils collected from a gold mining area in Ghana. The results for the fractionation of Cd, Cr, Fe, and Mn indicated that high percentages of metals were found in the residual fraction. This implies that the concentrations of metals in the soil are stable under normal environmental conditions. The bioavailability of metals in the soils declined in the following order: Mn (92.4%) > Cd (64.6%) > Cr (46.4%) > Fe (39%). However, the concentrations of labile metals may pose no risk to the environment. In the column test, different rainwater conditions (i.e., natural rainwater and acidified rainwater) were used to imitate the leaching potential of the metals in the actual field. The pH of the soil primarily controlled metal migration into deeper layers. Cumulative metal concentrations in the leachates showed that Fe, Mn, and Cd were high in the tested soils but present at low concentrations, except for Cd. Cadmium showed a higher concentration than the WHO guideline for drinking water, and its seepage into deeper layers may affect the quality of groundwater.
Collapse
|