1
|
An H, Liu T, Xiao X, Liu M, Hu Y, Wei P, Yao W, Tang X, Lai Y, Luo X, Luo S. Magnetic biochar-supported nanoscale zero-valent iron for remediation of arsenic and cadmium-contaminated soils: The role of free radicals. ENVIRONMENTAL RESEARCH 2025; 276:121484. [PMID: 40147515 DOI: 10.1016/j.envres.2025.121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
Remediating arsenic (As) and cadmium (Cd) in soils through immobilization faces challenges, primarily in isolating amendments from soil. While previous studies have focused on altering heavy metal speciation, they have not reduced total metal content, risking reactivation and secondary contamination. This study synthesized and characterized magnetic biochar loaded with nanoscale zero-valent iron (nZVI-MBC), which uses magnetic separation to decrease As and Cd levels in soil, offering a potential permanent solution for contaminant removal. The ability of nZVI-MBC to stabilize As and Cd in soil was evaluated. The results demonstrate that nZVI-MBC reduced total As and Cd content by 13.7 % and 12.3 %, respectively, and decreased their bioavailability by 34.1 % and 93.2 %, converting these metals into more stable forms. Post-treatment, increases in soil pH, cation exchange capacity, and organic matter were observed, along with enhanced soil enzyme activity. The stabilization mechanisms included electrostatic attraction, surface adsorption, complexation, and co-precipitation. Moreover, nZVI-MBC promoted the generation of hydroxyl radicals (•OH) and environmentally persistent free radicals (EPFRs), which facilitated the oxidation of As(III) to As(V), thereby reducing As migration. This study confirms that nZVI-MBC is a promising soil amendment for effective heavy metal remediation.
Collapse
Affiliation(s)
- Huanhuan An
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Mengting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Yi Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Pangzhi Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Weipeng Yao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Yongkang Lai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an, 343009, PR China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| |
Collapse
|
2
|
Chen L, Liu Z, Hu Z, Wang B, Bai Y, Song Y, Che H, Zhang X, Dai H, Wang X. Multifunctional Sites for Enhanced Adsorption of Arsenic Using Sulfydryl-Modified Biochar/MgFe-Layered Double Hydroxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10768-10781. [PMID: 40268879 DOI: 10.1021/acs.langmuir.4c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Arsenic contamination in water poses a significant threat to the environment and human health due to the high toxicity of arsenic. Therefore, the development of functionalized materials with an enhanced adsorption capacity for arsenic remains a key research focus in water purification. In this study, straw powder was hydrothermally pretreated and subsequently pyrolyzed with zinc chloride at 700 °C to produce hydrothermal biochar with tailored pores. The hydrothermal biochar was then modified with sulfhydryl groups, and Sulfhydryl-Modified Biochar/MgFe-Layered Double Hydroxides (SH@HB/MgFe-LDH) composites were synthesized using the coprecipitation method. By utilizing HB with a high surface area, a composite material with a high specific surface area of 479.3677 m2/g was prepared. The experimental results indicated that the SH@HB/MgFe-LDH composites exhibited excellent arsenic adsorption performance across a wide pH range, achieving an arsenic adsorption capacity as high as 388.01 mg/g. The adsorption process and mechanism of the SH@HB/MgFe-LDH composites were investigated through adsorption kinetics, adsorption isotherms, thermodynamic analysis, and X-ray photoelectron spectroscopy. Additionally, recycling studies demonstrated that the composites maintained stable performance over three reuse cycles, showing good potential for practical applications. Overall, the SH@HB/MgFe-LDH composites offer an effective solution for arsenic pollution control in water while promoting the high-value utilization of agricultural and forestry waste.
Collapse
Affiliation(s)
- Long Chen
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhechen Liu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zichu Hu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Boyun Wang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yu Bai
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yaru Song
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hengjun Che
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utlization, Hohhot 010018, China
- Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Hongguang Dai
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utlization, Hohhot 010018, China
| |
Collapse
|
3
|
Shu Z, Yang H, Ye S, Li H, Yang Z, Li C, Tan X, Liu S, Wang H. Iron scrap derived nano zero-valent iron/biochar activated persulfate for p-arsanilic acid decontamination with coexisting microplastics. J Environ Sci (China) 2025; 151:733-746. [PMID: 39481977 DOI: 10.1016/j.jes.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 11/03/2024]
Abstract
P-arsanilic acid (AA) has received widespread attention because of its conversion to more toxic inorganic arsenic compounds (arsenate and arsenite) in the natural ecosystems. Its removal process and mechanisms with co-existence of microplastics remain unkown. In this study, biochar loaded with nano zero-valent iron (nZVI) particles (ISBC) was prepared by using iron scrap obtained from a steel works and wood chips collected from a wood processing plant. The advanced oxidation system of sodium persulfate (PDS) activated by ISBC was applied for AA degradation and inorganic arsenic control in aqueous media. More than 99% of the AA was completely degraded by the ISBC/PDS system, and the As(III) on AA was almost completely oxidized to As(V) and finally removed by ISBC. HCO3- inhibited the removal of AA by the ISBC/PDS system, while Cl- had a dual effect that showing inhibition at low concentrations yet promotion at high concentrations. The effect of microplastics on the degradation of AA by the ISBC/PDS system was further investigated due to the potential for combined microplastic and organic arsenic contamination in rural/remote areas. Microplastics were found to have little effect on AA degradation in the ISBC/PDS system, while affect the transport of inorganic arsenic generated from AA degradation. Overall, this study provides new insights and methods for efficient removal of p-arsanilic acid from water with coexisting microplastics.
Collapse
Affiliation(s)
- Zihan Shu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, China
| | - Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhiming Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chuang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, China.
| | - Shaobo Liu
- School of Architecture and Art, Central South University, Changsha 410083, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
4
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
5
|
Zhang B, Zhang S, Zhu B, Shen W, She R. Persulfate activation by nanoscale zero-valent iron supported by modified blast furnace slag for degradation of phenol wastewater. ENVIRONMENTAL RESEARCH 2024; 260:119434. [PMID: 38945515 DOI: 10.1016/j.envres.2024.119434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Nano-zero valent iron (nZVI) was anchored and dispersed on the surface of acid-modified blast furnace slag (mBFS) through the liquid phase reduction method. The synthesized nZVI@mBFS composite exhibited remarkable ability to degrade phenol when used in conjunction with persulfate (PDS), 97.8% phenol could be eliminated in 30 min. All the anions like SO42-, HCO3-, H2PO4-, and CO32- were detrimental to the phenol degradation in nZVI@mBFS system. Moreover, electron paramagnetic resonance (EPR) analysis and radical scavenging tests confirmed that SO4•-, •OH and •O2- were the principal reactive oxygen species (ROSs) generated during the reaction process. The potential degradation pathways were also deduced based on the results obtained from gas chromatograph-mass spectrometer (GC-MS) analysis. Collectively, this study holds substantial significance in regards to recycling industrial solid wastes, devising efficient persulfate-activated materials, and treating wastewater.
Collapse
Affiliation(s)
- Bo Zhang
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| | - Shiwei Zhang
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China.
| | - Bohong Zhu
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| | - Weili Shen
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| | - Renjie She
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| |
Collapse
|
6
|
Wang J, Chen M, Han Y, Sun C, Zhang Y, Zang S, Qi L. Fast and efficient As(III) removal from water by bifunctional nZVI@NBC. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:160. [PMID: 38592564 DOI: 10.1007/s10653-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 μg/L were above 99% (the residual total arsenic below 10 μg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 μM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).
Collapse
Affiliation(s)
- Jiuwan Wang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mengfan Chen
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yulian Han
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ying Zhang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Shuyan Zang
- Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China.
| | - Lin Qi
- Shenyang Municipal Bureau of Ecology and Environment, Shenyang, 110036, People's Republic of China
| |
Collapse
|
7
|
Yin H, Zhou C, Wang J, Yin M, Wu Z, Song N, Song X, Shangguan Y, Sun Z, Zong Q, Hou H. Fe-CGS Effectively Inhibits the Dynamic Migration and Transformation of Cadmium and Arsenic in Soil. TOXICS 2024; 12:273. [PMID: 38668496 PMCID: PMC11054586 DOI: 10.3390/toxics12040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The iron-modified coal gasification slag (Fe-CGS) material has excellent performance in purifying heavy-metal-contaminated water due to its good surface properties and adsorption capacities. However, it is unclear whether it can provide long-term simultaneous stabilization of Cd and As in composite-contaminated soils in extreme environments. This study investigated the long-term stabilization of Cd and As in acidic (JLG) and alkaline (QD) soils by simulating prolonged heavy rainfall with the addition of Fe-CGS. Multiple extraction methods were used to analyze the immobilization mechanisms of Cd and As in soil and their effects on bioavailability. The results indicate that the stabilization efficiency was related to the dosage of Fe-CGS. The concentrations of Cd and As in the JLG soil leachate were reduced by 77.6% (2.0 wt%) and 87.8% (1.0 wt%), respectively. Additionally, the availability of Cd and As decreased by 46.7% (2.0 wt%) and 53.0% (1.0 wt%), respectively. In the QD soil leachate, the concentration of Cd did not significantly change, while the concentration of As decreased by 92.3% (2.0 wt%). Furthermore, the availability of Cd and As decreased by 22.1% (2.0 wt%) and 40.2% (1.0 wt%), respectively. Continuous extraction revealed that Fe-CGS facilitated the conversion of unstable, acid-soluble Cd into oxidizable Cd and acid-soluble Cd. Additionally, it promoted the transformation of both non-specifically and specifically adsorbed As into amorphous iron oxide-bound and residual As. Fe-CGS effectively improved the soil pH, reduced the bioavailability of Cd and As, and blocked the migration of Cd and As under extreme rainfall leaching conditions. It also promoted the transformation of Cd and As into more stable forms, exhibiting satisfactory long-term stabilization performance for Cd and As.
Collapse
Affiliation(s)
- Hongliang Yin
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Changzhi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Junhuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Mengxue Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Zhihao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| | - Ningning Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Xin Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Zaijin Sun
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China;
| | - Quanli Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (N.S.); (X.S.)
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (C.Z.); (J.W.); (M.Y.); (Z.W.)
| |
Collapse
|
8
|
Hou D, Cui X, Liu M, Qie H, Tang Y, Xu R, Zhao P, Leng W, Luo N, Luo H, Lin A, Wei W, Yang W, Zheng T. The effects of iron-based nanomaterials (Fe NMs) on plants under stressful environments: Machine learning-assisted meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120406. [PMID: 38373376 DOI: 10.1016/j.jenvman.2024.120406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.
Collapse
Affiliation(s)
- Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenpeng Leng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Nan Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Huilong Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| | - Wenjie Yang
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| | - Tianwen Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| |
Collapse
|
9
|
Fan X, Du C, Zhou L, Fang Y, Zhang G, Zou H, Yu G, Wu H. Biochar from phytoremediation plant residues: a review of its characteristics and potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16188-16205. [PMID: 38329669 DOI: 10.1007/s11356-024-32243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Phytoremediation is a cost-effective and eco-friendly plant-based approach promising technique to repair heavy metal-contaminated soils. However, a significant quantity of plant residues needs to be properly treated and utilized. Pyrolysis is an effective technology for converting residues to biochar, which can solve the problem and avoid secondary contamination. This paper reviews the generation, and physicochemical properties of biochar from phytoremediation residues, and its application in soil improvement, environmental remediation, and carbon sequestration. In spite of this, it is important to be aware of the potential toxicity of heavy metals in biochar and the environmental risks of biochar before applying it to practical applications. Future challenges in the production and application of residue-derived biochar include the rational selection of pyrolysis parameters and proper handling of potentially hazardous components in the biochar.
Collapse
Affiliation(s)
- Xueyan Fan
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, People's Republic of China
| | - Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, People's Republic of China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China.
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, People's Republic of China.
| | - Yi Fang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, People's Republic of China
| | - Guanhao Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, People's Republic of China
| | - Honghao Zou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, People's Republic of China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, People's Republic of China
| | - Haipeng Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, People's Republic of China
| |
Collapse
|
10
|
Xue W, Li J, Chen X, Liu H, Wen S, Shi X, Guo J, Gao Y, Xu J, Xu Y. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101933-101962. [PMID: 37659023 DOI: 10.1007/s11356-023-29564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Kong Y, Xu B, Lu F, Han Z, Ma J, Chen Z, Shen J. Enhancement of 15% calcium oxide doped nano zero-valent iron on arsenic removal from high-arsenic acid wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27604-y. [PMID: 37217816 DOI: 10.1007/s11356-023-27604-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Nano zero-valent iron (nZVI) has a great potential for arsenic removal, but it would form aggregates easily and consume largely by H+ in the strongly acidic solution. In this work, 15%CaO doped with nZVI (15%CaO-nZVI) was successfully synthesized from a simplified ball milling mixture combined with a hydrogen reduction method, which had a high adsorption capacity for As(V) removal from high-arsenic acid wastewater. More than 97% As(V) was removed by 15%CaO-nZVI under the optimum reaction conditions of pH 1.34, initial As(V) concentration 16.21 g/L, and molar ratio of Fe/As (nFe/nAs) 2.5:1. The effluent pH solution was weakly acidic 6.72, and the secondary arsenic removal treatment reduced the solid waste and improved arsenic grade in slag from the mass fraction of 20.02% to 29.07%. Multiple mechanisms including Ca2+ enhanced effect, adsorption, reduction, and co-precipitation coexisted for As(V) removal from high-arsenic acid wastewater. Doping of CaO might lead to improving cracking channels which was benefit for electronic transmission and the confusion of atomic distribution. The in situ weak alkaline environment generated on the surface of 15%CaO-nZVI would increase the content of γ-Fe2O3/Fe3O4, which was in favor for As(V) adsorption. In addition, H+ in the strongly acidic solution could accelerate corrosion of 15%CaO-nZVI and abundant fresh and reactive iron oxides continuously generated, which would provide plenty specific reactive site and fast charge transfer and ionic mobility for arsenic removal.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Bingjie Xu
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Fan Lu
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Zhao Han
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China.
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
12
|
Yan C, Wang X, Xia S, Zhao J. Mechanistic insights into the removal of As(III) and As(V) by iron modified carbon based materials with the aid of machine learning. CHEMOSPHERE 2023; 321:138125. [PMID: 36781000 DOI: 10.1016/j.chemosphere.2023.138125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The machine learning (ML) technique was used to examine the effects of different microscopic material features on the ability of iron modified carbon-based materials (Fe-CBMs) to remove As(V) and As(III). The findings showed that specific CBMs and Fe-CBMs features (such as surface functionality) from sophisticated microscopic and spectroscopic techniques led to models that were more accurate than those constructed using more basic information, such as bulk elemental composition and surface area (the root-mean-square error fell by 44.7% for As(V) and 56.9% for As(III), respectively). The high non-polar carbon (NPC) content of CBMs and Fe-CBMs had a detrimental influence on As(V) and As(III) removal capability, whereas surface oxygen-containing functional groups (SOFGs) contents on CBMs and Fe-CBMs played an essential role in arsenic removal based on ML approaches. The relative importance of CO was greater by 77.8% and 40.6% than that of C-O on the elimination of As(V) and As(III), respectively. The accurate ML models are helpful for the future design of Fe-CBMs and the relative importance and partial dependence plot analysis can direct the use of Fe-CBMs for arsenic removal in a sensible manner under different application situations.
Collapse
Affiliation(s)
- Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|