1
|
Liu G, Tu C, Li Y, Yang S, Wang Q, Wu X, Zhou T, Luo Y. Rapidly reducing cadmium from contaminated farmland soil by novel magnetic recyclable Fe 3O 4/mercapto-functionalized attapulgite beads. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124056. [PMID: 38677464 DOI: 10.1016/j.envpol.2024.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Reducing cadmium (Cd) content from contaminated farmland soils remains a major challenge due to the difficulty in separating commonly used adsorbents from soils. This study synthesized novel millimeter-sized magnetic Fe3O4/mercapto-functionalized attapulgite beads (MFBs) through a facile one-step gelation process incorporating alginate. The MFBs inherit the environmental stability of alginate and enhance its mechanical strength by hybridizing Fe3O4 and clay mineral components. MFBs can be easily separated from flooded soils by magnets. When applied to 12 Cd-polluted paddy soils and 14 Cd-polluted upland soils, MFBs achieved Cd(II) removal rates ranging from 16.9% to 62.2% and 9.8%-54.6%, respectively, within a 12-h period. The MFBs predominantly targeted the exchangeable and acid soluble, and reducible fractions of Cd, with significantly enhanced removal efficiencies in paddy soils compared to upland soils. Notably, MFBs exhibited superior adsorption performance in soils with lower pH and organic matter (OM) content, where the bioavailability and mobility of Cd are heightened. The reduction of Cd content by MFBs is a sustainable and safe method, as it permanently removes the bioavailable Cd from soil, rather than temporarily reducing its bioavailability. The functional groups such as -SH, -OH, present in attapulgite and alginate of MFBs, played a crucial role in Cd(II) adsorption. Additionally, attapulgite and zeolite provided a porous matrix structure that further enhanced Cd(II) adsorption. The results of X-ray photoelectron spectroscopy suggested that both chemical precipitation and surface complexation contributed to Cd(II) removal. The MFBs maintained 87.6% Cd removal efficiency after 5 regeneration cycles. The surface of the MFBs exposed new adsorption sites and increased the specific surface area during multiple cycles with Cd-contaminated soil. This suggests that MFBs treatment with magnetic retrieval is a potentially effective pathway for the rapid removal of Cd from contaminated farmland soils.
Collapse
Affiliation(s)
- Guoming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Shuai Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qihao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyou Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Wang X, Zhai X, Lian J, Cheng L, Wang M, Huang X, Chen Y, Pan J, He Z, Yang X. Varietal responses to a soil amendment: Balancing cadmium mitigation and mineral biofortification in wheat production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171772. [PMID: 38499106 DOI: 10.1016/j.scitotenv.2024.171772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.46 mg/kg. The results showed that the SA significantly reduced soil DTPA Cd (42.3 %) and resulted in a slight decrease in wheat grain yield (4.24-9.72 %, average 7.62 %). Similarly, the SA significantly reduced grain Cd concentrations (average 61.65 %) while increased the concentrations of beneficial elements such as Mo and Se in all wheat varieties. However, this intervention also led to a reduction in the concentration of essential mineral elements (such as Ca, Fe, and Mn) in whole wheat grain and starchy endosperm, as well as a reduction in their proportion in the bran. Based on genotypic differences, Huaimai 33, Zhenmai 168, Sumai 188 and Yangmai 28 were considered to be the relatively most promising wheat varieties for achieving a balance among food safety, nutritional quality, and economic yield in this region. Taken together, this study highlights the varietal differences in Cd mitigation and mineral accumulation in different wheat varieties in response to the SA, offering new perspectives for phytoremediation and biofortification strategies for Cd-contaminated farmland.
Collapse
Affiliation(s)
- Xin Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xu Zhai
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Liping Cheng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Miao Wang
- Hangzhou City University, Hangzhou 310058, China
| | - Xiwei Huang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Pan
- Agricultural and Rural Bureau of Changxing County, Zhejiang Province, Huzhou 323000, China
| | - Zhenli He
- Department of Soil, Water and Ecosystem Sciences, Indian River Research and Education Center, University of Florida-IFAS, Fort Pierce, FL 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Zhang Y, Xu Y, Huang Q, Liang X, Sun Y, Wang L. Transcriptome and ultrastructural analysis revealed the mechanism of Mercapto-palygorskite on reducing Cd content in wheat. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132890. [PMID: 37922582 DOI: 10.1016/j.jhazmat.2023.132890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Large areas of crop yields in northern China have faced with cadmium (Cd) contamination problems. Mercapto-modified palygorskite (MP), as a highly efficient immobilization material, could reduce Cd absorption in wheat and alleviate its biotoxicity. However, the molecular mechanism underlying MP-mediated Cd reduction and detoxification processes in wheat is not well understood. This aim of this study was to investigate the biochemical and molecular mechanisms underlying the reduction in Cd accumulation in wheat (Triticum aestivum L.). The results showed that MP application decreased the Cd concentration by 68.91-74.32% (root) and 70.68-77.2% (shoot), and significantly increased the glutathione (GSH) and phytochelatins (PCs) contents in root and shoot. In addition, with the application of MP, the percentage of Cd in the cell walls and organelles of wheat decreased, while that of Cd in soluble components was increased. The content of Cd in all components was significantly reduced. Ultrastructural analysis revealed that MP thickened the cell wall, promoted vesicle formation in the membrane and protected the integrity of intracellular organelles in wheat. Transcriptome analysis further confirmed the above results. MP upregulated the expression of several genes (CCR, CAD COMT and SUS) involved in cell wall component biosynthesis and promoted vesicle formation on cell membranes by upregulating the expression of PLC and IPMK genes. In addition, genes related to antioxidant synthesis (PGD, glnA and GSS) and photosynthesis (Lhca, Lhcb) were altered by MP to alleviate Cd toxicity in wheat. This present work will help to more thoroughly elucidate the molecular mechanism by which wheat defends against Cd contamination under MP application and provide and important research basis for the application of this material in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yingming Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China.
| | - Qingqing Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Xuefeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yuebing Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Lin Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| |
Collapse
|
4
|
Liu J, Zhao M, Zhao Y, Zhang C, Liu W, Wang Z, Zhou Q, Liang X. Mechanism of mercapto-modified palygorskite in reducing soil Cd activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159372. [PMID: 36244493 DOI: 10.1016/j.scitotenv.2022.159372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mercapto-modified palygorskite (MP) is an efficient novel amendment with superior ability to decrease soil Cd bioavailability, but the unclear immobilization mechanism has become the bottleneck of its performance improvement and precise application. In order to clarify the Cd reducing mechanism of MP, long-term and short-term soil incubation with three types of soils (paddy soil, alluvial soil and yellow mountain soil) and sorption verification experiments were conducted to investigate the dynamic process of soil labile Cd impacted by MP and the synergetic effects on labile Fe, Mn, S and dissolved organic carbon via in-situ diffusive gradients in thin-films and soil solution sampling techniques. MP with four dosages rapidly and continuously decreased soil labile Cd contents by 14.50 % ∼ 89.16 % in long-term incubation, meanwhile low-dosage MP reduced soil labile Fe and Mn contents, but high-dosage MP increased their contents. With MP dosages increased, the effects of Fe-Mn oxides on soil labile Cd content gradually weakened. MP effectively promoted the reduction of Fe adsorbed by clay minerals and enhanced their ability to adsorb Cd. Short-term incubation showed that MP could decline soil labile Cd by 7.17 % ∼ 44.74 %, especially at the dosage 0.4 %. MP was a reduction catalyst to facilitate Fe reduction, which profited for clay minerals adsorbing Cd. The sorption experiments indicated that 0.30 % MP could adsorb 73.34 % Cd2+, promote the release of Fe2+ from the soil, and stimulate the ability of clay minerals to adsorb Cd. The results revealed that MP decreased soil labile Cd content within 2 d, and MP made soil Cd activity change out of the influence of soil Fe/Mn redox system. The mechanism will be beneficial for the large-scale application of MP in safe utilization of Cd contaminated soil.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Meng Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chuangchuang Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhen Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiwen Zhou
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xuefeng Liang
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|