1
|
Phuc-Hanh Tran D, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121855. [PMID: 39025005 DOI: 10.1016/j.jenvman.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Aubrey Ramos
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
2
|
Jiao C, Chen H, Liu Y, Zhao H, Li Q, Wang G, Chen R, Li YY. Synergistic effects of biochar addition and filtration mode optimization on mitigating membrane fouling in high-solid anaerobic membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171648. [PMID: 38521277 DOI: 10.1016/j.scitotenv.2024.171648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
In this study, a high-solid anaerobic membrane bioreactor was established for treating food waste, and membrane fouling rates were regulated through multivariate modulation. The anaerobic membrane bioreactor operated stably at a high organic loading rate of 28.75 gCOD/L/d achieved a methane production rate of 8.03 ± 0.61 L/L/d. Experimental findings revealed that the most effective control of membrane fouling was achieved at a filtration- relaxation ratio (F/R) of 10/90 s. This indicates that a higher relaxation frequency provided improved the mitigation of membrane fouling. Compared with single F/R modulation, the combined modulation of biochar and F/R provided enhanced control over membrane fouling. Moreover, the addition of biochar altered the sludge properties of the reactor, thereby preventing the formation of a dense cake layer. Additionally, biochar enhanced the sheer force of the fluid on the membrane surface and facilitated the separation of pollutants during the relaxation stage, thereby contributing to improved control of membrane fouling.
Collapse
Affiliation(s)
- Chengfan Jiao
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Hao Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yaqian Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 9808579, Japan
| | - Hexiang Zhao
- HuaLu Engineering & Technology Co., Ltd, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 9808579, Japan; International S & T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| | - Gaojun Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S & T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S & T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 9808579, Japan
| |
Collapse
|
3
|
Mubashar M, Zulekha R, Cheng S, Xu C, Li J, Zhang X. Carbon-negative and high-rate nutrient recovery from municipal wastewater using mixotrophic Scenedesmus acuminatus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120360. [PMID: 38377758 DOI: 10.1016/j.jenvman.2024.120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The efficiency of mixotrophic microalgae in enhancing the recovery of waste nutrients has been well established; however, the recovery rate is crucial in meeting the needs of field applications. This study evaluated the impact of media characteristics on nutrient recovery under mixotrophic conditions. The mixotrophic N recovery rate with S. acuminatus in modified BG-11 reached 2.59 mg L-1h-1. A mixotrophic growth optimization strategy was applied to achieve a high-rate nutrient recovery from municipal wastewater treatment plant effluents. The contribution of waste chemical oxygen demand (COD) to nutrient recovery was assessed using secondary effluent (SE) under heterotrophy. The results highlighted a significant increase in total nitrogen (TN) and total phosphorus (TP) recovery rates when glucose was supplied, indicating the additional carbon requirements for efficient nutrient recovery. The TN and TP recovery rates under mixotrophic conditions with the addition of trace metals and high cell density were enhanced by 91.94% and 92.53%, respectively, resulting in recovery rates of 3.43 mg L-1h-1 and 0.30 mg L-1h-1. The same conditions were used for nutrient recovery from primary effluent (PE), and the results were more satisfactory as the TN and TP recovery rates reached 4.79 and 0.55 mg L-1h-1, respectively. Additionally, the study estimated the carbon footprints (C-footprints) and areal footprints of mixotrophy-based nitrogen recovery. The findings revealed carbon footprints and areal footprints of -15.93 ± 4.57 tCO2e t-1 N recovery and 0.53 ± 0.19 m3 m-2d-1 wastewater, respectively. This high-rate nutrient recovery, achieved under a carbon-negative (C-negative) budget through mixotrophy, presents a novel strategy for efficiently recovering resources from municipal wastewater, thus facilitating resource recycling and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Mubashar
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rabail Zulekha
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaozhe Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cong Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jing Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuezhi Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Rachbauer L, Granda CB, Shrestha S, Fuchs W, Gabauer W, Singer SW, Simmons BA, Urgun-Demirtas M. Energy and nutrient recovery from municipal and industrial waste and wastewater-a perspective. J Ind Microbiol Biotechnol 2024; 51:kuae040. [PMID: 39448370 PMCID: PMC11586630 DOI: 10.1093/jimb/kuae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2022] [Indexed: 10/26/2024]
Abstract
This publication highlights the latest advancements in the field of energy and nutrient recovery from organics rich municipal and industrial waste and wastewater. Energy and carbon rich waste streams are multifaceted, including municipal solid waste, industrial waste, agricultural by-products and residues, beached or residual seaweed biomass from post-harvest processing, and food waste, and are valuable resources to overcome current limitations with sustainable feedstock supply chains for biorefining approaches. The emphasis will be on the most recent scientific progress in the area, including the development of new and innovative technologies, such as microbial processes and the role of biofilms for the degradation of organic pollutants in wastewater, as well as the production of biofuels and value-added products from organic waste and wastewater streams. The carboxylate platform, which employs microbiomes to produce mixed carboxylic acids through methane-arrested anaerobic digestion, is the focus as a new conversion technology. Nutrient recycling from conventional waste streams such as wastewater and digestate, and the energetic valorization of such streams will also be discussed. The selected technologies significantly contribute to advanced waste and wastewater treatment and support the recovery and utilization of carboxylic acids as the basis to produce many useful and valuable products, including food and feed preservatives, human and animal health supplements, solvents, plasticizers, lubricants, and even biofuels such as sustainable aviation fuel. ONE-SENTENCE SUMMARY Multifaceted waste streams as the basis for resource recovery are essential to achieve environmental sustainability in a circular economy, and require the development of next-generation waste treatment technologies leveraging a highly adaptive mixed microbial community approach to produce new biochemicals, biomaterials, and biofuels from carbon-rich organic waste streams.
Collapse
Affiliation(s)
- Lydia Rachbauer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Shilva Shrestha
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Werner Fuchs
- Department for Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Wolfgang Gabauer
- Department for Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Blake A Simmons
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | | |
Collapse
|
5
|
Wang Y, Gao Y, Lu X, Gadow SI, Zhuo G, Hu W, Song Y, Zhen G. Bioelectrochemical anaerobic membrane bioreactor enables high methane production from methanolic wastewater: Roles of microbial ecology and microstructural integrity of anaerobic biomass. CHEMOSPHERE 2023; 339:139676. [PMID: 37527740 DOI: 10.1016/j.chemosphere.2023.139676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
The disintegration of anaerobic sludge and blockage of membrane pores has impeded the practical application of anaerobic membrane bioreactor (AnMBR) in treating methanolic wastewater. In this study, bioelectrochemical system (BES) was integrated into AnMBR to alleviate sludge dispersion and membrane fouling as well as enhance bioconversion of methanol. Bioelectrochemical regulation effect induced by BES enhanced methane production rate from 4.94 ± 0.52 to 5.39 ± 0.37 L/Lreactor/d by accelerating the enrichment of electroactive microorganisms and the agglomeration of anaerobic sludge via the adhesive and chemical bonding force. 16 S rRNA gene high-throughput sequencing demonstrated that bioelectrochemical stimulation had modified the metabolic pathways by regulating the key functional microbial communities. Methanogenesis via the common methylotrophic Methanomethylovorans was partially substituted by the hydrogenotrophic Candidatus_Methanofastidiosum, etc. The metabolic behaviors of methanol are bioelectrochemistry-dependent, and controlling external voltage is thus an effective strategy for ensuring robust electron transfer, low membrane fouling, and long-term process stability.
Collapse
Affiliation(s)
- Yue Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai, 200062, PR China
| | | | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou, 350003, China
| | - Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, PR China
| | - Yu Song
- Shanghai Techase Environment Protection Co., Ltd., 1121 North Zhongshan No. 2 Road, Shanghai, 200092, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai, 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|
6
|
Ahmad A, Senaidi AS. Sustainability for wastewater treatment: bioelectricity generation and emission reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48703-48720. [PMID: 36862299 DOI: 10.1007/s11356-023-26063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/16/2023] [Indexed: 04/16/2023]
Abstract
This review covers the technological measures of a self-sustainable anaerobic up-flow sludge blanket (UASB) system compared with an aerobic activated sludge process (ASP) for wastewater treatment plants (WWTPs). The ASP requires a huge amount of electricity and chemicals and also results in the emission of carbon. The UASB system, instead, is based on greenhouse gas (GHG) emission reduction and is associated with biogas production for cleaner electricity. WWTPs including the ASP system are not sustainable due to the massive financial power required for clean wastewater. When the ASP system was used, the amount of production was estimated to be 10658.98 tonnes CO2eq-d- of carbon dioxide. Whereas it was 239.19 tonnes CO2eq-d-1 with the UASB. The UASB system is advantageous over the ASP system as it has a high production of biogas, needs low maintenance, yields a low amount of sludge, and is also a source of electricity that can be used as a power source for the WWTPs. Also, the UASB system produces less biomass, and this helps in reducing costs and maintaining work. Moreover, the aeration tank of the ASP needs 60% of energy distribution; on the other hand, the UASB consumes less energy, approximately 3-11%.
Collapse
Affiliation(s)
- Anwar Ahmad
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33 Postal Code 616, Nizwa, Sultanate of Oman.
| | - Alaya Said Senaidi
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33 Postal Code 616, Nizwa, Sultanate of Oman
| |
Collapse
|
7
|
Zieliński M, Dębowski M, Kazimierowicz J. Performance of an Innovative Low-Cost Recycled Filling (LCRF) in Anaerobic Treatment of Dairy Effluent-A Pilot-Scale Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217815. [PMID: 36363404 PMCID: PMC9655942 DOI: 10.3390/ma15217815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 05/14/2023]
Abstract
The rapid growth in dairy production leads to increasing outputs of high-load effluent, necessitating new methods of treating such waste. Anaerobic processes have been increasingly popular but are hamstrung by limited nutrient removal efficiency. The aim of the present study was to investigate whether low-cost recycled filling (LCRF) improves the anaerobic treatment of dairy effluent. The addition of LCRF was found to increase both COD removal (86.1 ± 2.6%-92.8 ± 1.6%) and Ptot. removal (22.1 ± 3.5% to 36.9 ± 4.6%) from the wastewater. The LCRF ensured near-neutral pH and stabilized the structure of the anaerobic microbe community (including Archaea) across all pollutant loads tested. This translated to efficient biogas production and high methane content in the LCRF reactors, peaking at 0.35 ± 0.01 m3/kg CODremoved and 68.2 ± 0.6% (respectively) in the best-performing variant.
Collapse
Affiliation(s)
- Marcin Zieliński
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
- Correspondence:
| | - Marcin Dębowski
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| |
Collapse
|