1
|
Yu H, Le X, Peñuelas J, Sardans J, Xu C, Zou Y, Zhang X, Li C, Mao Z, Cheng D, Zhong Q. Trait divergence and opposite above- and below-ground strategies facilitate moso bamboo invasion into subtropical evergreen broadleaf forest. FRONTIERS IN PLANT SCIENCE 2024; 15:1410372. [PMID: 39100082 PMCID: PMC11294163 DOI: 10.3389/fpls.2024.1410372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Understanding the invasion of moso bamboo (Phyllostachys edulis) into adjacent evergreen broadleaf forest based on functional traits is crucial due to its significant influence on ecosystem processes. However, existing research has primarily focused on above- or below-ground traits in isolation, lacking a comprehensive integration of both. In this study, we conducted a trait-based analysis including 23 leaf traits and 11 root traits in three forest types - bamboo forest, mixed bamboo and broadleaf forest, and evergreen broadleaf forest - to investigate trait differences, phenotypic integration, and above- and below-ground resource strategies in bamboo and broadleaf species. Our findings demonstrated significant differences in leaf and root key traits between bamboo and broadleaf species, strongly supporting the "phenotypic divergence hypothesis". Bamboo exhibited stronger trait correlations compared to broadleaf species, indicating higher phenotypic integration. Above- and below-ground strategies were characterized by trade-offs rather than coordination, resulting in a multi-dimensional trait syndrome. Specifically, a unidimensional leaf economics spectrum revealed that bamboo with higher leaf N concentrations (LNC), P concentrations (LPC), and specific leaf area (SLA) adopted a "fast acquisitive" above-ground strategy, while broadleaf species with thicker leaves employed a "slow conservative" above-ground strategy. A two-dimensional root trait syndrome indicated a "conservation" gradient with bamboo adopting a "slow conservative" below-ground strategy associated with higher root tissue density (RTD), and broadleaf species exhibiting a "fast acquisitive" below-ground strategy linked to higher root N concentrations (RNC) and P concentrations (RPC), and a "collaboration" gradient probably ranging from broadleaf species with a "do-it-yourself" strategy characterized by high specific root length (SRL), to bamboo adopting an "outsourcing" strategy with thicker roots. In conclusion, key trait divergence from coexisting broadleaf species, higher phenotypic integration, and multi-dimensional opposite above- and below-ground resource strategies confer competitive advantages to moso bamboo, shedding light on the mechanistic understanding of its invasion into subtropical evergreen broadleaf forest and providing theoretical guidance for maintaining the stability of subtropical forest ecosystem.
Collapse
Affiliation(s)
- Hua Yu
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Xingui Le
- Department of Protection and Management, Administrative Bureau of Yangjifeng National Nature Reserve, Guixi, Jiangxi, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain
- Ecological and Forestry Applications Research Center (CREAF), Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain
- Ecological and Forestry Applications Research Center (CREAF), Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Chaobin Xu
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian, China
| | - Yuxing Zou
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- College of Tourism and Resources Environment, Zaozhuang University, Zaozhuang, Shandong, China
| | - Xue Zhang
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
| | - Conghui Li
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhenwei Mao
- Department of Protection and Management, Administrative Bureau of Yangjifeng National Nature Reserve, Guixi, Jiangxi, China
| | - Dongliang Cheng
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian, China
| | - Quanlin Zhong
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Guo Y, Shao M, Guan P, Yu M, Geng L, Gao Y, Meng L, Qu B. Co-Invasion of Congeneric Invasive Plants Adopts Different Strategies Depending on Their Origins. PLANTS (BASEL, SWITZERLAND) 2024; 13:1807. [PMID: 38999647 PMCID: PMC11244186 DOI: 10.3390/plants13131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Plant communities may be co-invaded by invasive plants, sometimes even by congeneric invasive plants (CIPs). Despite the growing understanding of co-invasion in the environment, little is known about how CIP interactions and mechanisms regulate co-invasion. Darwin's naturalisation conundrum predicts that the coexistence of closely related species is difficult due to their structural and behavioural similarities. Nevertheless, communities containing closely related species are more susceptible to being invaded because close relatives may favour similar environments; therefore, this hypothesis should be followed in the co-invasion of CIPs. To explore whether the phylogenetic relatedness and origins of invasive species to CIPs can promote or hinder co-invasion, we conducted a controlled interaction and soil-legacy greenhouse experiment to quantify the growth response of invasive plants and their congeners. We consistently found that CIPs of identical origin were more likely to co-invade compared to CIPs of distinct origins. CIPs of distinct origins exhibited an antagonistic effect on co-invasion by allelopathy. Invasive plant-conditioned soil was more conducive to the growth of CIPs of identical origin than CIPs of distinct origins. Our results revealed the different effects of invader-invader phylogenetic relatedness on co-invader success and impact, suggesting the operation of different mechanisms across co-invasion.
Collapse
Affiliation(s)
- Yujun Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Meini Shao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Guan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengyang Yu
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China
| | - Lin Geng
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China
| | - Ying Gao
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China
| | - Lin Meng
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Hu D, Khan IU, Wang J, Shi X, Jiang X, Qi S, Dai Z, Mao H, Du D. Invasive Wedelia trilobata Performs Better Than Its Native Congener in Various Forms of Phosphorous in Different Growth Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:3051. [PMID: 37687298 PMCID: PMC10490449 DOI: 10.3390/plants12173051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
At present, many hypotheses have been proposed to explain the mechanism of alien plants' successful invasion; the resource fluctuations hypothesis indicates that nutrient availability is a main abiotic factor driving the invasion of alien plants. Higher phosphorus utilization and absorption efficiency might be one of the important reasons for alien plants successful invasion. Wedelia trilobata, one of the notorious invasive weeds in China, possesses a strong ability to continue their development under infertile habitats. In this study, firstly, W. trilobata and its native congener, W. chinensis, were grown in various phosphorus forms to test their absorption efficiency of phosphorus. Secondly, the different responses of W. trilobata and W. chinensis to the insoluble phosphorus in three growth stages (at 30, 60, and 150 days cultivation) were also tested. The results showed that the growth rate, root morphology, and phosphorus absorption efficiency of W. trilobata under various insoluble, organic, or low phosphorus conditions were significantly higher than that of W. chinensis. During the short-term cultivation period (30 d), the growth of W. trilobata under insoluble and low phosphorus treatments had no significant difference, and the growth of W. trilobata in insoluble phosphorus treatment also had no significant effect in long-term cultivation (60 and 150 d). However, the growth of W. chinensis in each period under the conditions of insoluble and low phosphorus was significantly inhibited throughout these three growth stages. Therefore, invasive W. trilobata had a higher phosphorus utilization efficiency than its native congener. This study could explain how invasive W. trilobata performs under nutrient-poor habitats, while also providing favorable evidence for the resource fluctuations hypothesis.
Collapse
Affiliation(s)
- Die Hu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Irfan Ullah Khan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (I.U.K.); (X.S.); (Z.D.); (D.D.)
| | - Jiahao Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Xinning Shi
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (I.U.K.); (X.S.); (Z.D.); (D.D.)
| | - Xinqi Jiang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Shanshan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (I.U.K.); (X.S.); (Z.D.); (D.D.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (I.U.K.); (X.S.); (Z.D.); (D.D.)
| |
Collapse
|
4
|
Guo X, Hu Y, Ma JY, Wang H, Wang KL, Wang T, Jiang SY, Jiao JB, Sun YK, Jiang XL, Li MY. Nitrogen Deposition Effects on Invasive and Native Plant Competition: Implications for Future Invasions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115029. [PMID: 37216867 DOI: 10.1016/j.ecoenv.2023.115029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Nitrogen (N) deposition has increased dramatically in recent decades, which is significantly affecting the invasion and growth of exotic plants. Whether N deposition leads to invasive alien species becoming competitively superior to native species remains to be investigated. In the present study, an invasive species (Oenothera biennis L.) and three co-occurring native species (Artemisia argyi Lévl. et Vant., Inula japonica Thunb., and Chenopodium album L.) were grown in a monoculture (two seedlings of the same species) or mixed culture (one seedling of O. biennis and one seedling of a native species) under three levels of N deposition (0, 6, and 12 g∙m-2∙year-1). Nitrogen deposition had no effect on soil N and P content. Nitrogen deposition enhanced the crown area, total biomass, leaf chlorophyll content, and leaf N to phosphorus ratio in both invasive and native plants. Oenothera biennis dominated competition with C. album and I. japonica due to its high resource acquisition and absorption capacity (greater height, canopy, leaf chlorophyll a to chlorophyll b ratio, leaf chlorophyll content, leaf N content, leaf mass fraction, and lower root-to-shoot ratio). However, the native species A. argyi exhibited competitive ability similar to O. biennis. Thus, invasive species are not always superior competitors of native species; this depends on the identities of the native species. High N deposition enhanced the competitive dominance of O. biennis over I. japonica by 15.45% but did not alter the competitive dominance of O. biennis over C. album. Furthermore, N deposition did not affect the dominance of O. biennis or A. argyi. Therefore, the species composition of the native community must be considered when preparing to resist future biological invasions. Our study contributes to a better understanding of the invasion mechanisms of alien species under N-loading conditions.
Collapse
Affiliation(s)
- Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, PR. China
| | - Yi Hu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China
| | - Jin-Ye Ma
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China
| | - Hui Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China
| | - Kui-Ling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China.
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China
| | - Si-Yu Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China
| | - Ji-Bo Jiao
- Shandong Territorial Spatial Planning Institute, No. 5948 Erhuandong Road, Jinan 250014, PR China
| | - Ying-Kun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China
| | - Xiao-Lei Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China
| | - Ming-Yan Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, PR China.
| |
Collapse
|
5
|
Guo X, Ma JY, Liu LL, Li MY, Wang H, Sun YK, Wang T, Wang KL, Meyerson LA. Effects of salt stress on interspecific competition between an invasive alien plant Oenothera biennis and three native species. FRONTIERS IN PLANT SCIENCE 2023; 14:1144511. [PMID: 37025129 PMCID: PMC10070839 DOI: 10.3389/fpls.2023.1144511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Biological invasions and soil salinization have become increasingly severe environmental problems under global change due to sea-level rise and poor soil management. Invasive species can often outcompete native species, but few studies focus on whether invasive alien species are always superior competitors under increasing stressors. We grew an invasive grass species, Oenothera biennis L., and three native grass species (Artemisia argyi Lévl. et Vant., Chenopodium album L., and Inula japonica Thunb.) as a monoculture (two seedlings of each species) or mixture (one seedling of O. biennis and one native species seedling) under three levels of salt treatments (0, 1, and 2 g/kg NaCl) in a greenhouse. We found that invasive O. biennis exhibited greater performance over native C. album and I. japonica, but lower performance compared to A. argyi, regardless of the soil salinity. However, salinity did not significantly affect the relative dominance of O. biennis. Interspecific competition enhanced the growth of O. biennis and inhibited the growth of I. japonica. Although O. biennis seedlings always had growth dominance over C. album seedlings, C. album was not affected by O. biennis at any salt level. At high salt levels, O. biennis inhibited the growth of A. argyi, while A. argyi did not affect the growth of O. biennis. Salt alleviated the competitive effect of O. biennis on I. japonica but did not mitigate the competition between O. biennis and the other two native species. Therefore, our study provides evidence for a better understanding of the invasive mechanisms of alien species under various salinity conditions.
Collapse
Affiliation(s)
- Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Jin-Ye Ma
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Le-Le Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
| | - Ming-Yan Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Hui Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Ying-Kun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Kui-Ling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Laura A. Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|