1
|
Yang K, Guo B, Shen K, Luo W, Zhang B, Hua Y, Zhang Y. Unraveling immobilization mechanisms of Cd in soil by MgO-modified palygorskite/biochar composite: DFT calculation and combined-artificial aging. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122576. [PMID: 39307083 DOI: 10.1016/j.jenvman.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
In this study, a combination method of freeze-thaw cycle, dry-wet cycle, and chemical agings was used to investigate the aging effect of MgO-modified palygorskite/biochar composite (MPBC) in soil, and its immobilization capacity on Cd under aging. The immobilization mechanisms of MPBC for Cd were explored through several characterizations and DFT calculations. The results showed that MPBC effectively reduced the activate state of Cd by 56.63% at 8 mg/kg Cd concentration. Additionally, MPBC treatment improved physicochemical properties of soil, notably increasing soil pH by 0.26-0.64 units, thereby facilitating Cd immobilization. The predominant mechanism underlying Cd immobilization by MPBC involved the Cd-π complexation, ions exchange, precipitation, and complexation of surface functional groups, including C-O and C=O, with Cd. The citric acid emerged as a milder oxidizing agent combined with freeze-thaw and dry-wet aging conducive to studying the aging effect of MPBC. The dynamic calculation showed that MgO played an important role in the Cd adsorption, with a maximum probability function of 18.35 for Cd. Moreover, within the temperature range of 20 °C-30 °C, the distance between MPBC and Cd was the closest. This study provides a new idea for artificial aging of biochar and a practical method for the remediation of Cd pollution in soil.
Collapse
Affiliation(s)
- Kunpeng Yang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Bingyue Guo
- Jiangsu Geology&Mineral Exploration Bureau, Nanjing, 210018, PR China
| | - Kai Shen
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Nanjing Gekof Institute of Environmental Protection Technology Equipment Co., Ltd. Nanjing, 211106, PR China
| | - Wenxuan Luo
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Bin Zhang
- Jiangsu Geology&Mineral Exploration Bureau, Nanjing, 210018, PR China
| | - Yuxuan Hua
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
2
|
Liu Q, Sheng Y, Liu X, Wang Z. Reclamation of co-pyrolyzed dredging sediment as soil cadmium and arsenic immobilization material: Immobilization efficiency, application safety, and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122753. [PMID: 39368382 DOI: 10.1016/j.jenvman.2024.122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
The safe management of toxic metal-polluted dredging sediment (DS) is imperative owing to its potential secondary hazards. Herein, the co-pyrolysis product (DS@BC) of polluted DS was creatively applied to immobilize soil Cd and As to achieve DS resource utilization, and the efficiency, safety, and mechanism were investigated. The results revealed that the DS@BC was more effective at reducing soil Cd bioavailability than the DS was (58.9-73.2% vs. 21.8-27.4%), except for the dilution effect, whereas the opposite phenomenon occurred for soil As (25.5-35.7% vs. 35.7-42.8%). The DS@BC immobilization efficiency was dose-dependent for both Cd and As. Soil labile Cd and As were transformed to more stable fractions after DS@BC immobilization. DS@BC immobilization inhibited the transfer of soil Cd and As to Brassica chinensis L. and did not cause excessive accumulation of other toxic metals in the plants. The appropriate addition of the DS@BC (8%) sufficiently alleviated the oxidative stress response of the plants and enhanced their growth. These findings indicate that the DS@BC was safe and effective for soil Cd and As immobilization. DS@BC immobilization decreased the diversity and richness of the rhizosphere soil bacterial community because of the dilution effect. The DS@BC immobilized soil Cd and As via direct adsorption, and indirect increasing soil pH, and regulating the abundance of specific beneficial bacteria (e.g., Bacillus). Therefore, the use of co-pyrolyzed DS as a soil Cd and As immobilization material is a promising resource utilization method for DS. Notably, to verify the long-term effects and safety of DS@BC immobilization, field trials should be conducted to explore the effectiveness and risk of harmful metal release from DS@BC immobilization under real-world conditions.
Collapse
Affiliation(s)
- Qunqun Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China.
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan, 250101, China
| | - Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Long XX, Yu ZN, Liu SW, Gao T, Qiu RL. A systematic review of biochar aging and the potential eco-environmental risk in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134345. [PMID: 38696956 DOI: 10.1016/j.jhazmat.2024.134345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Biochar is widely accepted as a green and effective amendment for remediating heavy metals (HMs) contaminated soil, but its long-term efficiency and safety changes with biochar aging in fields. Currently, some reviews have qualitatively summarized biochar aging methods and mechanisms, aging-induced changes in biochar properties, and often ignored the potential eco-environmental risk during biochar aging process. Therefore, this review systematically summarizes the study methods of biochar aging, quantitatively compares the effects of different biochar aging process on its properties, and discusses the potential eco-environmental risk due to biochar aging in HMs contaminated soil. At present, various artificial aging methods (physical aging, chemical aging and biological aging) rather than natural field aging have been applied to study the changes of biochar's properties. Generally, biochar aging increases specific surface area (SSA), pore volume (PV), surface oxygen-containing functional group (OFGs) and O content, while decreases pH, ash, H, C and N content. Chemical aging method has a greater effect on the properties of biochar than other aging methods. In addition, biochar aging may lead to HMs remobilization and produce new types of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), environmentally persistent free radicals (EPFRs) and colloidal/nano biochar particles, which consequently bring secondary eco-environmental risk. Finally, future research directions are suggested to establish a more accurate assessment method and model on biochar aging behavior and evaluate the environmental safety of aged biochar, in order to promote its wider application for remediating HMs contaminated soil.
Collapse
Affiliation(s)
- Xin-Xian Long
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Ze-Ning Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shao-Wen Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Gao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Tian G, Luo Q, Xing R, Zhang J, Li X. Cadmium pollution exacerbated by drought: Insights from the nanoscale interaction at the clay mineral surface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172520. [PMID: 38631631 DOI: 10.1016/j.scitotenv.2024.172520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Drought is a global environmental problem, while the effect of drought-induced unsaturation on the fate of heavy metal ions is still poorly understood, particularly the lack of mechanistic information at the molecular level. This study used molecular dynamics simulations to investigate nanoscale interactions at the montmorillonite surface under different moisture conditions. Compared to the saturated condition, drought increased the amounts and strength of Cd2+ ions adsorbed on the montmorillonite (MMT) surface while decreased the diffusivity, which was especially obvious in extreme drought conditions (θv=21%-7%). This is closely related to the compressed electric double layer, overcompensation of surface charge, and increased ion pair interactions, resulting from the confinement of water films under drought stress. Further analysis showed that the decrease of hydration effect was responsible for the exacerbated cadmium pollution. Therefore, this study may break the stereotypes about the interactions between heavy metal ions and soil minerals. The results suggest that water management (e.g., irrigation) may be prioritized before beginning heavy metal remediation.
Collapse
Affiliation(s)
- Guantong Tian
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Qi Luo
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Rui Xing
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jianguo Zhang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Xiong Li
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
5
|
Meng Z, Huang S, Wu J, Lin Z. Competitive adsorption and immobilization of Cd, Ni, and Cu by biochar in unsaturated soils under single-, binary-, and ternary-metal systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131106. [PMID: 36907057 DOI: 10.1016/j.jhazmat.2023.131106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the competitive adsorption and immobilization of cadmium (Cd), nickel (Ni), and copper (Cu) by biochar in unsaturated soils under single-, binary-, and ternary-metal systems. The results showed that the immobilization effects by the soil itself were in the order of Cu > Ni > Cd, and the adsorption capacities of freshly contaminated heavy metals by biochar were in the order of Cd > Ni > Cu in unsaturated soils. The adsorption and immobilization of Cd by biochars in soils was weakened by competition more in the ternary-metal system than that in the binary-metal system; the competition with Cu caused a more significant weakening effect than that with Ni. For Cd and Ni, nonmineral mechanisms preferentially adsorbed and immobilized Cd and Ni compared to mineral mechanisms, but the contributions of the mineral mechanisms to the adsorption gradually increased and became dominant with increasing concentrations (at average percentages of 62.59%-83.30% and 41.38%-74.29%, respectively). However, for Cu, the contributions of the nonmineral mechanisms to Cu adsorption were always dominant (average percentages of 60.92%-74.87%) and gradually increased with increasing concentrations. This study highlighted that the types of heavy metals and coexistence should be focused when remediating heavy metal contamination in soils.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|