1
|
Zhang X, Gao X, Chi Z. Metabolite Monomethyl Phthalate (MMP) Induces Oxidative Damage in Rat Erythrocytes: Role of Vitamins C and E. TOXICS 2025; 13:379. [PMID: 40423458 DOI: 10.3390/toxics13050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025]
Abstract
Dimethyl phthalate (DMP) can enter the human body and be absorbed into the bloodstream to produce monomethyl phthalate (MMP). MMP in the environment can also enter the bloodstream. However, little is known about the toxicity of the phthalate metabolite MMP in most organisms. In this study, the erythrocyte toxicity of MMP and a preventive approach were investigated using Sprague-Dawley (SD) rats as the model animal under MMP concentrations of 5-250 mg/kg (sub-chronic exposure in vivo) and 1.25-100 μg/mL (acute exposure in vitro). The experimental results indicate that the interaction of MMP with erythrocytes caused oxidative damage, which decreased the number of red blood cells and the hemoglobin content and increased the content of methemoglobin and the iron release of hemoglobin in rat blood. However, the above results were not observed when MMP directly interacted with hemoglobin. The antioxidants vitamin C and vitamin E improved the above blood indicators in rats. The results of this study provide certain theoretical guidance for the evaluation of the potential risks of phthalate metabolites.
Collapse
Affiliation(s)
- Xuxin Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xu Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China
| |
Collapse
|
2
|
Wang Y, Wang L, Jiang Z, Qu M, Meng Z, Sun Q, Du Y, Wang Y. Non-dietary exposure to phthalates in primary school children: Risk and correlation with anthropometric indices, cardiovascular and respiratory diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117203. [PMID: 39423508 DOI: 10.1016/j.ecoenv.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Phthalates are endocrine disruptors of increasing concern for human health; however, previous studies have only assessed the association between internal exposure and human health. We aimed to assess the non-carcinogenic and carcinogenic risks of non-dietary exposure to phthalates in indoor environments among primary school children and their correlations with health indicators. A study involving 54 children was conducted in Jinan, Shandong Province, China. Questionnaires and health examinations were conducted, dust in hard-to-clean corners of students' classrooms and homes was collected, and airborne phthalates in the middle of classrooms and family living rooms were sampled. The gas-phase phthalate concentrations, individual exposure, and non-carcinogenic and carcinogenic risks were calculated. Associations were estimated using linear mixed models. The findings revealed that phthalates posed a non-carcinogenic risk to 7.4 % of the children and a moderate carcinogenic risk to 27.8 % of the children, with higher non-carcinogenic and carcinogenic risks to girls than to boys. Five phthalates were negatively correlated with body mass index, dimethyl phthalate and diethyl phthalate (DEP) were significantly correlated with waist circumference, and di-iso-butyl phthalate (DiBP) was negatively correlated with hip circumference. DiBP, di-n-butyl phthalate, and DEP, were significantly correlated with cardiovascular disease, DEP and di (2-n-butoxyethyl) phthalate were correlated with decreased lung function, and di-n-octyl phthalate influenced airway inflammation. The findings indicated that phthalate exposure may negatively impact children's health, thereby warranting further comprehensive research on the health effects of these chemicals.
Collapse
Affiliation(s)
- Yuchen Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Zhiyu Jiang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Meinan Qu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ziyan Meng
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Zhang D, Sun T, Bao J, Fu J. Implications of DNA damage in chronic lung disease. Front Cell Dev Biol 2024; 12:1436767. [PMID: 39544366 PMCID: PMC11560874 DOI: 10.3389/fcell.2024.1436767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
DNA plays an indispensable role in ensuring the perpetuation of life and safeguarding the genetic stability of living organisms. The emergence of diseases linked to a wide spectrum of responses to DNA damage has garnered increasing attention within the scientific community. There is growing evidence that patterns of DNA damage response in the lungs are associated with the onset, progression, and treatment of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and bronchopulmonary dysplasia (BPD). Currently, some studies have analyzed the mechanisms by which environmental factors induce lung DNA damage. In this article, we summarize inducible factors of lung DNA damage, current indicators, and methods for diagnosing DNA damage in chronic lung diseases and explore repair mechanisms after DNA damage including nonhomologous end-joining and homology-directed repair end joining pathways. Additionally, drug treatments that may reduce DNA damage or promote repair after it occurs in the lungs are briefly described. In general, more accurate assessment of the degree of lung DNA damage caused by various factors is needed to further elucidate the mechanism of lung DNA damage and repair after damage, so as to search for potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Pérez-Díaz C, Pérez-Carrascosa FM, Riquelme-Gallego B, Villegas-Arana E, Armendariz AJ, Galindo-Ángel J, Frederiksen H, León J, Requena P, Arrebola JP. Serum Phthalate Concentrations and Biomarkers of Oxidative Stress in Adipose Tissue in a Spanish Adult Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7719-7730. [PMID: 38651840 PMCID: PMC11080070 DOI: 10.1021/acs.est.3c07150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
The relationship between phthalates, a group of chemical pollutants classified as endocrine disruptors, and oxidative stress is not fully understood. The aim of the present hospital-based study was to explore the associations between circulating levels of 10 phthalate metabolites and 8 biomarkers of oxidative stress in adipose tissue. The study population (n = 143) was recruited in two hospitals in the province of Granada (Spain). Phthalate metabolite concentrations were analyzed by isotope diluted online-TurboFlow-LC-MS/MS in serum samples, while oxidative stress markers were measured by commercially available kits in adipose tissue collected during routine surgery. Statistical analyses were performed by MM estimators' robust linear regression and weighted quantile sum regression. Mainly, positive associations were observed of monomethyl phthalate (MMP), monoiso-butyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP) (all low molecular weight phthalates) with glutathione peroxidase (GPx) and thiobarbituric acid reactive substances (TBARS), while an inverse association was found between monoiso-nonyl phthalate (MiNP) (high molecular weight phthalate) and the same biomarkers. WQS analyses showed significant effects of the phthalate mixture on GSH (β = -30.089; p-value = 0.025) and GSSG levels (β = -19.591; p-value = 0.030). Despite the limitations inherent to the cross-sectional design, our novel study underlines the potential influence of phthalate exposure on redox homeostasis, which warrants confirmation in further research.
Collapse
Affiliation(s)
- Celia Pérez-Díaz
- Department
of Preventive Medicine and Public Health, Pharmacy School, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas
Externas 2, 2a Planta, 18012 Granada, Spain
| | - Francisco M. Pérez-Carrascosa
- Department
of Preventive Medicine and Public Health, Pharmacy School, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Blanca Riquelme-Gallego
- Department
of Preventive Medicine and Public Health, Pharmacy School, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Department
of Nursing, Faculty of Health Sciences, C/ Cortadura del Valle Sn, 51001 Ceuta, Spain
| | - Elena Villegas-Arana
- Department
of Preventive Medicine and Public Health, Pharmacy School, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Alejandro Joaquín Armendariz
- Department
of Preventive Medicine and Public Health, Pharmacy School, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Javier Galindo-Ángel
- Department
of Preventive Medicine and Public Health, Pharmacy School, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Hanne Frederiksen
- Department
of Growth and Reproduction, Copenhagen University
Hospital, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- International
Center for Research and Research Training in Endocrine Disruption
of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Josefa León
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas
Externas 2, 2a Planta, 18012 Granada, Spain
- CIBER
en
Enfermedades Hepáticas y Digestivas (CIBEREHD), Av. Monforte de Lemos, 3-5. Pabellón
11. Planta 0, 28029 Madrid, Spain
- Unidad
de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, Av. del Conocimiento, s/n, 18016 Granada, Spain
| | - Pilar Requena
- Department
of Preventive Medicine and Public Health, Pharmacy School, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas
Externas 2, 2a Planta, 18012 Granada, Spain
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta
0, 28029 Madrid, Spain
| | - Juan Pedro Arrebola
- Department
of Preventive Medicine and Public Health, Pharmacy School, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto
de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas
Externas 2, 2a Planta, 18012 Granada, Spain
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta
0, 28029 Madrid, Spain
| |
Collapse
|
5
|
Han Q, Gao X, Wang S, Wei Z, Wang Y, Xu K, Chen M. Co-exposure to polystyrene microplastics and di-(2-ethylhexyl) phthalate aggravates allergic asthma through the TRPA1-p38 MAPK pathway. Toxicol Lett 2023; 384:73-85. [PMID: 37500026 DOI: 10.1016/j.toxlet.2023.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Increasing attention has been paid to the potential impact of microplastics (MPs) pollution on human health. MPs and phthalates coexist in the environment, however, the effects of exposure to MPs alone or to a combination of di-(2-ethylhexyl) phthalate (DEHP) and MPs on allergic asthma are unclear. This study investigates the effects of exposure to polystyrene microplastics (PS-MPs) or co-exposure with DEHP, on allergic asthma, and the underlying molecular mechanisms. We established an allergic asthma model using ovalbumin, and mice were exposed to PS-MPs (5 mg/kg bw/day) alone, or combined with DEHP (0.5, 5 mg/kg bw/day), for 28 days. The results showed that in the presence of ovalbumin (OVA) sensitization, exposure to PS-MPs alone slightly affected airway inflammation, and airway hyperresponsiveness, while co-exposure to PS-MPs and DEHP caused more significant damage. Co-exposure also induced more oxidative stress and Th2 immune responses, and activation of the TRPA1 and p38 MAPK pathways. The aggravation of asthmatic symptoms induced by co-exposure to PS-MPs and DEHP were inhibited by blocking TRPA1 ion channel or p38 MAPK pathway. The results demonstrated that co-exposure to PS-MPs and DEHP exacerbates allergic asthma, by exacerbating oxidative stress and inflammatory responses, and activating the TRPA1-p38 MAPK pathway.
Collapse
Affiliation(s)
- Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shuwei Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|