1
|
Chen CY, Chang YH, Chen CHS, Chang SY, Chan CC, Chen PC, Su TC. Wastewater SARS-CoV-2 monitoring in a university hospital forecasts multilevel epidemic curves in Taipei City, Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118299. [PMID: 40398252 DOI: 10.1016/j.ecoenv.2025.118299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025]
Abstract
As COVID-19 shifts toward endemicity, ongoing surveillance remains critical to identifying and containing potential outbreaks, particularly in high-risk settings. Wastewater monitoring at targeted institutions offers a promising approach for early detection; however, its utility in forecasting broader epidemic trends remains underexplored. This study aimed to establish the wastewater surveillance platform for SARS-CoV-2 in a University Hospital to forecast the epidemic at the hospital, the surrounding community, and the city levels. During April and October 2022, we conducted routine wastewater sampling at seven sampling wells across the campus twice weekly. The direct viral RNA capture method was adopted for the pretreatment, concentration, and extraction of viral RNA. The presence of SARS-CoV-2 RNA in the wastewater samples was detected and quantified with RT-qPCR targeting N1, N2, and E-gene. SARS-CoV-2 signals relative to pepper mild mottle virus were calculated. Simple linear regression models were used to model the future moving averages of cumulative confirmed cases per 100,000 population at the hospital, community, and city levels. High consistency was observed in the E, N1, and N2 gene targets. Even with only eight new cases in the Zhongzheng District (5.42 per 100,000 population) and 145 cases in the entire city (5.85 per 100,000 population), the virus can be detected in sewage, indicating promising sensitivity. The relative viral signals in the wastewater were strongly associated with future epidemiological indicators at the hospital, community, and city levels. Wastewater sampling and quantification of SARS-CoV-2 is proven to be an efficient and robust method for the tracking and forecasting of infection trends within and beyond hospital settings.
Collapse
Affiliation(s)
- Chung-Yen Chen
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital Yunlin Branch, No. 95, Xuefu Rd., Huwei Township, Yunlin County 632, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng Dist., Taipei City 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei City 100, Taiwan.
| | - Yu-Hsiang Chang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei City 100, Taiwan
| | - Chi-Hsin Sally Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei City 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1, Changde St., Zhongzheng Dist., Taipei City 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng Dist., Taipei City 100, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei City 100, Taiwan.
| | - Pau-Chung Chen
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng Dist., Taipei City 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei City 100, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli County 350, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng Dist., Taipei City 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei City 100, Taiwan; Division of Cardiology, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, No. 699, Section 8, Taiwan Blvd., Wuqi Dist., Taichung City 435, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng Dist., Taipei City 100, Taiwan.
| |
Collapse
|
2
|
Shanmugam BK, Alqaydi M, Abdisalam D, Shukla M, Santos H, Samour R, Petalidis L, Oliver CM, Brudecki G, Salem SB, Elamin W. A Narrative Review of High Throughput Wastewater Sample Processing for Infectious Disease Surveillance: Challenges, Progress, and Future Opportunities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1432. [PMID: 39595699 PMCID: PMC11593539 DOI: 10.3390/ijerph21111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024]
Abstract
During the recent COVID-19 pandemic, wastewater-based epidemiological (WBE) surveillance played a crucial role in evaluating infection rates, analyzing variants, and identifying hot spots in a community. This expanded the possibilities for using wastewater to monitor the prevalence of infectious diseases. The full potential of WBE remains hindered by several factors, such as a lack of information on the survival of pathogens in sewage, heterogenicity of wastewater matrices, inconsistent sampling practices, lack of standard test methods, and variable sensitivity of analytical techniques. In this study, we review the aforementioned challenges, cost implications, process automation, and prospects of WBE for full-fledged wastewater-based community health screening. A comprehensive literature survey was conducted using relevant keywords, and peer reviewed articles pertinent to our research focus were selected for this review with the aim of serving as a reference for research related to wastewater monitoring for early epidemic detection.
Collapse
Affiliation(s)
| | - Maryam Alqaydi
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Degan Abdisalam
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Monika Shukla
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Helio Santos
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Ranya Samour
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Lawrence Petalidis
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | | | - Grzegorz Brudecki
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Samara Bin Salem
- Abu Dhabi Quality and Conformity Council (ADQCC), Abu Dhabi P.O. Box 2282, United Arab Emirates
| | - Wael Elamin
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| |
Collapse
|
3
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
4
|
West NW, Hartrick J, Alamin M, Vasquez AA, Bahmani A, Turner CL, Shuster W, Ram JL. Passive swab versus grab sampling for detection of SARS-CoV-2 markers in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164180. [PMID: 37201848 PMCID: PMC10185491 DOI: 10.1016/j.scitotenv.2023.164180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day. Collecting grab samples at a single time may miss marker presence, while autosampling throughout a day is technically challenging and expensive. This study investigates a passive sampling method that would be expected to accumulate greater amounts of viral material from sewers over a period of time. Tampons were tested as passive swab sampling devices from which viral markers could be eluted with a Tween-20 surfactant wash. Six sewersheds in Detroit were sampled 16-22 times by paired swab (4 h immersion before retrieval) and grab methods over a five-month period and enumerated for N1 and N2 SARS-CoV-2 markers using ddPCR. Swabs detected SARS-CoV-2 markers significantly more frequently (P < 0.001) than grab samples, averaging two to three-fold more copies of SARS-CoV-2 markers than their paired grab samples (p < 0.0001) in the assayed volume (10 mL) of wastewater or swab eluate. No significant difference was observed in the recovery of a spiked-in control (Phi6), indicating that the improved sensitivity is not due to improvements in nucleic acid recovery or reduction of PCR inhibition. The outcomes of swab-based sampling varied significantly between sites, with swab samples providing the greatest improvements in counts for smaller sewersheds that otherwise tend to have greater variation in grab sample counts. Swab-sampling with tampons provides significant advantages in detection of SARS-CoV-2 wastewater markers and are expected to provide earlier detection of new outbreaks than grab samples, with consequent public health benefits.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - Md Alamin
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - Azadeh Bahmani
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State, Detroit, MI 48201, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State, Detroit, MI 48201, USA.
| |
Collapse
|
5
|
Ram JL, Shuster W, Gable L, Turner CL, Hartrick J, Vasquez AA, West NW, Bahmani A, David RE. Wastewater Monitoring for Infectious Disease: Intentional Relationships between Academia, the Private Sector, and Local Health Departments for Public Health Preparedness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6651. [PMID: 37681792 PMCID: PMC10487196 DOI: 10.3390/ijerph20176651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
The public health emergency caused by the COVID-19 pandemic stimulated stakeholders from diverse disciplines and institutions to establish new collaborations to produce informed public health responses to the disease. Wastewater-based epidemiology for COVID-19 grew quickly during the pandemic and required the rapid implementation of such collaborations. The objective of this article is to describe the challenges and results of new relationships developed in Detroit, MI, USA among a medical school and an engineering college at an academic institution (Wayne State University), the local health department (Detroit Health Department), and an environmental services company (LimnoTech) to utilize markers of the COVID-19 virus, SARS-CoV-2, in wastewater for the goal of managing COVID-19 outbreaks. Our collaborative team resolved questions related to sewershed selection, communication of results, and public health responses and addressed technical challenges that included ground-truthing the sewer maps, overcoming supply chain issues, improving the speed and sensitivity of measurements, and training new personnel to deal with a new disease under pandemic conditions. Recognition of our complementary roles and clear communication among the partners enabled city-wide wastewater data to inform public health responses within a few months of the availability of funding in 2020, and to make improvements in sensitivity and understanding to be made as the pandemic progressed and evolved. As a result, the outbreaks of COVID-19 in Detroit in fall and winter 2021-2022 (corresponding to Delta and Omicron variant outbreaks) were tracked in 20 sewersheds. Data comparing community- and hospital-associated sewersheds indicate a one- to two-week advance warning in the community of subsequent peaks in viral markers in hospital sewersheds. The new institutional relationships impelled by the pandemic provide a good basis for continuing collaborations to utilize wastewater-based human and pathogen data for improving the public health in the future.
Collapse
Affiliation(s)
- Jeffrey L. Ram
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - William Shuster
- College of Engineering, Wayne State University, Detroit, MI 48202, USA;
| | - Lance Gable
- Law School, Wayne State University, Detroit, MI 48202, USA
| | | | | | - Adrian A. Vasquez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Nicholas W. West
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Azadeh Bahmani
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Randy E. David
- Detroit Health Department, Detroit, MI 48201, USA
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
7
|
Hart JJ, Jamison MN, McNair JN, Szlag DC. Frequency and degradation of SARS-CoV-2 markers N1, N2, and E in sewage. JOURNAL OF WATER AND HEALTH 2023; 21:514-524. [PMID: 37119151 DOI: 10.2166/wh.2023.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that is mainly spread through aerosolized droplets containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is excreted in feces by infected individuals. Sewage surveillance has been applied widely to obtain data on the prevalence of COVID-19 in whole communities. We used SARS-CoV-2 gene targets N1, N2, and E to determine the prevalence of COVID-19 at both municipal and building levels. Frequency analysis of wastewater testing indicated that single markers detected only 85% or less of samples that were detected as positive for SARS-CoV-2 with the three markers combined, indicating the necessity of pairing markers to lower the false-negative rate. The best pair of markers in both municipal and building level monitoring was N1 and N2, which correctly identified 98% of positive samples detected with the three markers combined. The degradation rates of all three targets were assessed at two different temperatures (25 and 35 °C) as a possible explanation for observed differences between markers in frequency. Results indicated that all three RNA targets degrade at nearly the same rate, indicating that differences in degradation rate are not responsible for the observed differences in marker frequency.
Collapse
Affiliation(s)
- John J Hart
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail:
| |
Collapse
|
8
|
Dehghan Banadaki M, Torabi S, Strike WD, Noble A, Keck JW, Berry SM. Improving wastewater-based epidemiology performance through streamlined automation. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109595. [PMID: 36875746 PMCID: PMC9970922 DOI: 10.1016/j.jece.2023.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has enabled us to describe Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in populations. However, implementation of wastewater monitoring of SARS-CoV-2 is limited due to the need for expert staff, expensive equipment, and prolonged processing times. As WBE increases in scope (beyond SARS-CoV-2) and scale (beyond developed regions), there is a need to make WBE processes simpler, cheaper, and faster. We developed an automated workflow based on a simplified method termed exclusion-based sample preparation (ESP). Our automated workflow takes 40 min from raw wastewater to purified RNA, which is several times faster than conventional WBE methods. The total assay cost per sample/replicate is $6.50 which includes consumables and reagents for concentration, extraction, and RT-qPCR quantification. The assay complexity is reduced significantly, as extraction and concentration steps are integrated and automated. The high recovery efficiency of the automated assay (84.5 ± 25.4%) yielded an improved Limit of Detection (LoDAutomated=40 copies/mL) compared to the manual process (LoDManual=206 copies/mL), increasing analytical sensitivity. We validated the performance of the automated workflow by comparing it with the manual method using wastewater samples from several locations. The results from the two methods correlated strongly (r = 0.953), while the automated method was shown to be more precise. In 83% of the samples, the automated method showed lower variation between replicates, which is likely due to higher technical errors in the manual process e.g., pipetting. Our automated wastewater workflow can support the expansion of WBE in the fight against Coronavirus Disease of 2019 (COVID-19) and other epidemics.
Collapse
Affiliation(s)
| | - Soroosh Torabi
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States
| | - William D Strike
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States
| | - Ann Noble
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States
| | - James W Keck
- Department of Family and Community Medicine, College of Medicine, University of Kentucky, United States
| | - Scott M Berry
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States
| |
Collapse
|
9
|
Ram N, Shuster W, Gable L, Ram JL. Ethical and legal wastewater surveillance. Science 2023; 379:652. [PMID: 36795810 DOI: 10.1126/science.adg7147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Natalie Ram
- Carey School of Law, University of Maryland, Baltimore, MD, USA
| | - William Shuster
- Civil and Environmental Engineering, Wayne State University, Detroit, MI, USA
| | - Lance Gable
- Wayne State University Law School, Detroit, MI, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|