1
|
Law I, Becker E, Spoja BS, Kobal K, Yiridoe M, Alashraf A, Parker BL, McCarthy DT, Murphy HM. Assessing Passive Sampling for the Monitoring of E. coli and Cryptosporidium spp. in Environmental Waters. ACS ES&T WATER 2025; 5:1673-1682. [PMID: 40242344 PMCID: PMC11998927 DOI: 10.1021/acsestwater.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
Passive sampling has shown promise as an alternative approach for monitoring of pathogens in aquatic matrices. We conducted two controlled experiments to compare the efficacy of membrane passive sampling to composite sampling in both wastewater and surface water for the detection of Escherichia coli and Cryptosporidium. We also investigated the relative uptake of E. coli and Cryptosporidium onto membrane passive samplers over time. Both sampling methods returned positive detections of E. coli at all deployment times (4, 8, 24, 48, 72, and 96 h) in both water matrices. Passive sampling for Cryptosporidium showed similar detection rates as composite samples in surface water (31% passive; 41% composite) and wastewater (76% passive; 86% composite). We found significant linear uptake of E. coli onto passive samplers up to 96 h in surface water (R 2 = 0.932; p = 0.002). In wastewater, maximum passive sampler uptake of E. coli was reached after 24 h. For Cryptosporidium, linear uptake was observed up to 96 h for both surface water (R 2 = 0.805; p = 0.015) and wastewater (R 2 = 0.877; p = 0.006). Our results support that membrane passive samplers may be used for the detection of Cryptosporidium and E. coli in surface waters for up to 96 h.
Collapse
Affiliation(s)
- Ilya Law
- Water,
Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology,
Ontario Veterinary College, University of
Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Erin Becker
- Water,
Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology,
Ontario Veterinary College, University of
Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Brandon S. Spoja
- Water,
Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology,
Ontario Veterinary College, University of
Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Katrina Kobal
- Water,
Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology,
Ontario Veterinary College, University of
Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Martha Yiridoe
- Water,
Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology,
Ontario Veterinary College, University of
Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Abdul Alashraf
- Water,
Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology,
Ontario Veterinary College, University of
Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Beth L. Parker
- Morwick
G360 Groundwater Research Institute, College of Engineering and Physical
Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - David T. McCarthy
- School
of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
- School
of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Heather M. Murphy
- Water,
Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology,
Ontario Veterinary College, University of
Guelph, Guelph, Ontario, Canada N1G 2W1
- School
of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
2
|
Holzer C, Ho J, Tiehm A, Stange C. Wastewater monitoring - passive sampling for the detection of SARS-CoV-2 and antibiotic resistance genes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178244. [PMID: 39729846 DOI: 10.1016/j.scitotenv.2024.178244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples. In particular, it is difficult to sample small catchments, critical facilities (e.g. hospitals) or low-income countries where the use of automatic water samplers is not possible or the samplers are not available. To overcome these problems, this study developed a low-cost and easy-to-use passive sampler based on activated carbon as an adsorbent with a corresponding elution/extraction protocol that allows the detection of viruses and antibiotic resistance genes in wastewater. Monitoring of SARS-CoV-2 with these passive samplers at the influent of a wastewater treatment plant over a period of 1.5 months showed a positive correlation with monitoring with 24-h composite samples in the catchment area. Analysis of the nucleic acid extracts for antibiotic resistance genes showed the presence of clinically relevant carbapenemase genes such as blaKPC-3 and blaNDM-1 in the wastewater samples, with these genes being detected more reliably by the passive samplers than in the 24-h composite samples. This study therefore demonstrated that passive samplers provide reproducible SARS-CoV-2 RNA and antibiotic resistance gene signals from wastewater and a time-integrated measurement of the sampled matrix with high sensitivity.
Collapse
Affiliation(s)
- C Holzer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - J Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - C Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
3
|
Karamati N E, Law I, Weese JS, McCarthy DT, Murphy HM. Passive sampling of microbes in various water sources: A systematic review. WATER RESEARCH 2024; 266:122284. [PMID: 39353231 DOI: 10.1016/j.watres.2024.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
Traditional methods for monitoring pathogens in environmental waters have numerous drawbacks. Sampling approaches that are low-cost and time efficient that can capture temporal variation in microbial contamination are needed. Passive sampling of aquatic environments has shown promise as an alternative water monitoring technique for waterborne pathogens and microbial contaminants. The present systematic review aimed to compile and synthesize existing literature on the use of passive samplers for the monitoring of microbes in different water sources and identify research gaps. The review summarizes current knowledge on materials used for detection, deployment durations, analytical methods, quantification as well as benefits and limitations of passive sampling. This review found that electronegative nitrocellulose membrane filters are effective for both detection and quantification of viruses in wastewater, while gauze passive samplers have been effective for detecting bacterial targets in wastewater. There is a large knowledge gap in the use of passive samplers in a quantitative manner, especially for the back-calculation of water-column microbial concentrations or for correlation to outcomes of interest (e.g. prevalence rates). Further, there is very limited attention paid to the use of membrane filters for the monitoring of bacteria in any water source as well as a lack of studies utilizing passive sampling approaches for protozoa.
Collapse
Affiliation(s)
- Elnaz Karamati N
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia
| | - Ilya Law
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia; School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada; Department of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia
| | - Heather M Murphy
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; Department of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Mejías-Molina C, Estarlich-Landajo I, Martínez-Puchol S, Bofill-Mas S, Rusiñol M. Exploring waterborne viruses in groundwater: Quantification and Virome characterization via passive sampling and targeted enrichment sequencing. WATER RESEARCH 2024; 266:122305. [PMID: 39216128 DOI: 10.1016/j.watres.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Aquifers, which provide drinking water for nearly half the world's population, face significant challenges from microbial contamination, particularly from waterborne viruses such as human adenovirus (HAdV), norovirus (NoV) and enterovirus (EV). This study, conducted as part of the UPWATER project, investigates the sources of urban groundwater contamination using viral passive sampling (VPS) and target enrichment sequencing (TES). We assessed the abundance of eight viral pathogens (HAdV, EV, NoV genogroup I and II, rotavirus, influenza A virus, hepatitis E virus and SARS-CoV-2) and investigated the virome diversity of groundwater in the aquifer of the Besòs River Delta in Catalonia. Over a period of 7 months, we collected 114 samples from the aquifer using nylon and nitrocellulose membranes to adsorb viruses over a 10-day period. Human faecal contamination was detected in nearly 50 % of the groundwater samples, with mean HAdV total counts ranging from 1.23E+02 to 3.66E+03 GC, and occasional detections of EV and NoV GI and GII. In addition, deep sequencing revealed a diverse virome in the aquifer, with detection of human pathogens, including adenovirus, astrovirus, calicivirus, enterovirus, herpesvirus, papillomavirus and rotavirus. Time-integrated sampling using VPS increases the likelihood of virus detection and, when combined with TES, can provide a deeper understanding of virus prevalence in this important water compartment. This approach is expected to streamline long-term monitoring efforts and enable small communities or water managers with limited resources to effectively manage their groundwater reservoirs.
Collapse
Affiliation(s)
- Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| | - Ignasi Estarlich-Landajo
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Vicerectorat de Recerca, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain.
| |
Collapse
|
5
|
de la Rosa O, Aguayo-Acosta A, Valenzuela-Amaro HM, Meléndez-Sánchez ER, Sosa-Hernández JE, Parra-Saldívar R. Development of biomaterial composite hydrogel as a passive sampler with potential application in wastewater-based surveillance. Heliyon 2024; 10:e37014. [PMID: 39296035 PMCID: PMC11407980 DOI: 10.1016/j.heliyon.2024.e37014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Nowadays, the need to track fast-spreading infectious diseases has raised due to the recent COVID-19 disease pandemic. As a response, Wastewater-based Surveillance (WBS) has emerged as an early detection and disease tracking method for large populations that enables a comprehensive overview of public health allowing for a faster response from public health sector to prevent large outbreaks. The process to achieve WBS requires a highly intensive sampling strategy with either expensive equipment or trained personnel to continuously sample. The sampling problem can be addressed by passive sampler development. Chitosan-based hydrogels are recognized for their capability to sample and remove various contaminants from wastewater, including metals, dyes, pharmaceuticals, among others. However, chitosan-based hydrogels unique characteristics, can be exploited to develop passive samplers of genetic material that can be a very valuable tool for WBS. This study aimed to develop a novel chitosan hydrogel formulation with enhanced characteristics suitable for use as a passive sampler of genetic material and its application to detect disease-causing pathogens present in wastewater. The study evaluates the effect of the concentration of different components on the formulation of a Chitosan composite hydrogel (Chitosan, Glutaraldehyde, Microcrystalline cellulose (MCC), and Polyethylene glycol (PEG)) on the hydrogel properties using a Box Hunter & Hunter experimental matrix. Hydrogels' weight, thickness, swelling ratio, microscopic morphology (SEM), FTIR assay, and zeta potential were characterized. The resulting hydrogel formulations were shown to be highly porous, positively charged (Zeta potential up to 35.80 ± 1.44 mV at pH 3) and with high water swelling capacity (up to 703.89 ± 15.00 %). Based on the results, a formulation from experimental design was selected and then evaluated its capacity to adsorb genetic material from a control spiked water with Influenza A virus synthetic vector. The adsorption capacity of the selected formulation was 4157.04 ± 64.74 Gene Copies/mL of Influenza A virus synthetic vector. The developed hydrogel showed potential to be used as passive sampler for pathogen detection in wastewater. However, deeper research can be conducted to improve adsorption, desorption and extraction techniques of genetic material from chitosan-hydrogel matrices.
Collapse
Affiliation(s)
- Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Hiram Martín Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| |
Collapse
|
6
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
7
|
Geissler M, Mayer R, Helm B, Dumke R. Food and Environmental Virology: Use of Passive Sampling to Characterize the Presence of SARS-CoV-2 and Other Viruses in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:25-37. [PMID: 38117471 DOI: 10.1007/s12560-023-09572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Fecal shedding of SARS-CoV-2 leads to a renaissance of wastewater-based epidemiology (WBE) as additional tool to follow epidemiological trends in the catchment of treatment plants. As alternative to the most commonly used composite samples in surveillance programs, passive sampling is increasingly studied. However, the many sorbent materials in different reports hamper the comparison of results and a standardization of the approach is necessary. Here, we compared different cost-effective sorption materials (cheesecloths, gauze swabs, electronegative filters, glass wool, and tampons) in torpedo-style housings with composite samples. Despite a remarkable variability of the concentration of SARS-CoV-2-specific gene copies, analysis of parallel-deposited passive samplers in the sewer demonstrated highest rate of positive samples and highest number of copies by using cheesecloths. Using this sorption material, monitoring of wastewater of three small catchments in the City of Dresden resulted in a rate of positive samples of 50% in comparison with composite samples (98%). During the investigation period, incidence of reported cases of SARS-CoV-2 in the catchments ranged between 16 and 170 per 100,000 persons and showed no correlation with the measured concentrations of E gene in wastewater. In contrast, constantly higher numbers of gene copies in passive vs. composite samples were found for human adenovirus and crAssphage indicating strong differences of efficacy of methods concerning the species investigated. Influenza virus A and B were sporadically detected allowing no comparison of results. The study contributes to the further understanding of possibilities and limits of passive sampling approaches in WBE.
Collapse
Affiliation(s)
- Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robin Mayer
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden, Germany
| | - Björn Helm
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Hu S, Qin L, Yi H, Lai C, Yang Y, Li B, Fu Y, Zhang M, Zhou X. Carbonaceous Materials-Based Photothermal Process in Water Treatment: From Originals to Frontier Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305579. [PMID: 37788902 DOI: 10.1002/smll.202305579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.
Collapse
Affiliation(s)
- Shuyuan Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
9
|
Farkas K, Pântea I, Woodhall N, Williams D, Lambert-Slosarska K, Williams RC, Grimsley JMS, Singer AC, Jones DL. Diurnal changes in pathogenic and indicator virus concentrations in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123785-123795. [PMID: 37989946 PMCID: PMC10746776 DOI: 10.1007/s11356-023-30381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Wastewater-based epidemiology (WBE) has been commonly used for monitoring SARS-CoV-2 outbreaks. As sampling times and methods (i.e. grab vs composite) may vary, diurnal changes of viral concentrations in sewage should be better understood. In this study, we collected untreated wastewater samples hourly for 4 days at two wastewater treatment plants in Wales to establish diurnal patterns in virus concentrations and the physico-chemical properties of the water. Simultaneously, we also trialled three absorbent materials as passive samples as a simple and cost-efficient alternative for the collection of composite samples. Ninety-six percent of all liquid samples (n = 74) and 88% of the passive samplers (n = 59) were positive for SARS-CoV-2, whereas 87% and 97% of the liquid and passive samples were positive for the faecal indicator virus crAssphage, respectively. We found no significant daily variations in the concentration of the target viruses, ammonium and orthophosphate, and the pH and electrical conductivity levels were also stable. Weak positive correlations were found between some physico-chemical properties and viral concentrations. More variation was observed in samples taken from the influent stream as opposed to those taken from the influent tank. Of the absorbent materials trialled as passive samples, we found that tampons provided higher viral recoveries than electronegative filter paper and cotton gauze swabs. For all materials tested, viral recovery was dependent on the virus type. Our results indicate that grab samples may provide representative alternatives to 24-h composite samples if taken from the influent tank, hence reducing the costs of sampling for WBE programmes. Tampons are also viable alternatives for cost-efficient sampling; however, viral recovery should be optimised prior to use.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK.
| | - Igor Pântea
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Nick Woodhall
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Denis Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | | | - Rachel C Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Jasmine M S Grimsley
- Data Analytics & Surveillance Division, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
- The London Data Company, London, EC2N 2AT, UK
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Davey L Jones
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
10
|
Hayes EK, Gouthro MT, Fuller M, Redden DJ, Gagnon GA. Enhanced detection of viruses for improved water safety. Sci Rep 2023; 13:17336. [PMID: 37833399 PMCID: PMC10575868 DOI: 10.1038/s41598-023-44528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Human viruses pose a significant health risk in freshwater environments, but current monitoring methods are inadequate for detecting viral presence efficiently. We evaluated a novel passive in-situ concentration method using granular activated carbon (GAC). This study detected and quantified eight enteric and non-enteric, pathogenic viruses in a freshwater recreational lake in paired grab and GAC passive samples. The results found that GAC passive sampling had a higher detection rate for all viruses compared to grab samples, with adenovirus found to be the most prevalent virus, followed by respiratory syncytial virus, norovirus, enterovirus, influenza A, SARS-CoV-2, and rotavirus. GAC in-situ concentration allowed for the capture and recovery of viral gene copy targets that ranged from one to three orders of magnitude higher than conventional ex-situ concentration methods used in viral monitoring. This simple and affordable sampling method may have far-reaching implications for reducing barriers associated with viral monitoring across various environmental contexts.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3H 4R2, Canada.
| | - Madison T Gouthro
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3H 4R2, Canada
| | - Megan Fuller
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3H 4R2, Canada
| | - David J Redden
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
11
|
Aguayo-Acosta A, Jiménez-Rodríguez MG, Silva-Lance F, Oyervides-Muñoz MA, Armenta-Castro A, de la Rosa O, Ovalle-Carcaño A, Melchor-Martínez EM, Aghalari Z, Parra-Saldívar R, Sosa-Hernández JE. Passive Sampler Technology for Viral Detection in Wastewater-Based Surveillance: Current State and Nanomaterial Opportunities. Viruses 2023; 15:1941. [PMID: 37766347 PMCID: PMC10537877 DOI: 10.3390/v15091941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Although wastewater-based surveillance (WBS) is an efficient community-wide surveillance tool, its implementation for pathogen surveillance remains limited by ineffective sample treatment procedures, as the complex composition of wastewater often interferes with biomarker recovery. Moreover, current sampling protocols based on grab samples are susceptible to fluctuant biomarker concentrations and may increase operative costs, often rendering such systems inaccessible to communities in low-to-middle-income countries (LMICs). As a response, passive samplers have emerged as a way to make wastewater sampling more efficient and obtain more reliable, consistent data. Therefore, this study aims to review recent developments in passive sampling technologies to provide researchers with the tools to develop novel passive sampling strategies. Although promising advances in the development of nanostructured passive samplers have been reported, optimization remains a significant area of opportunity for researchers in the area, as methods for flexible, robust adsorption and recovery of viral genetic materials would greatly improve the efficacy of WBS systems while making them more accessible for communities worldwide.
Collapse
Affiliation(s)
- Alberto Aguayo-Acosta
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mildred G. Jiménez-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Fernando Silva-Lance
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mariel Araceli Oyervides-Muñoz
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Arnoldo Armenta-Castro
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Orlado de la Rosa
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Antonio Ovalle-Carcaño
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Elda M. Melchor-Martínez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Zahra Aghalari
- Faculty of Public Health, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Roberto Parra-Saldívar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Juan Eduardo Sosa-Hernández
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| |
Collapse
|
12
|
West NW, Hartrick J, Alamin M, Vasquez AA, Bahmani A, Turner CL, Shuster W, Ram JL. Passive swab versus grab sampling for detection of SARS-CoV-2 markers in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164180. [PMID: 37201848 PMCID: PMC10185491 DOI: 10.1016/j.scitotenv.2023.164180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day. Collecting grab samples at a single time may miss marker presence, while autosampling throughout a day is technically challenging and expensive. This study investigates a passive sampling method that would be expected to accumulate greater amounts of viral material from sewers over a period of time. Tampons were tested as passive swab sampling devices from which viral markers could be eluted with a Tween-20 surfactant wash. Six sewersheds in Detroit were sampled 16-22 times by paired swab (4 h immersion before retrieval) and grab methods over a five-month period and enumerated for N1 and N2 SARS-CoV-2 markers using ddPCR. Swabs detected SARS-CoV-2 markers significantly more frequently (P < 0.001) than grab samples, averaging two to three-fold more copies of SARS-CoV-2 markers than their paired grab samples (p < 0.0001) in the assayed volume (10 mL) of wastewater or swab eluate. No significant difference was observed in the recovery of a spiked-in control (Phi6), indicating that the improved sensitivity is not due to improvements in nucleic acid recovery or reduction of PCR inhibition. The outcomes of swab-based sampling varied significantly between sites, with swab samples providing the greatest improvements in counts for smaller sewersheds that otherwise tend to have greater variation in grab sample counts. Swab-sampling with tampons provides significant advantages in detection of SARS-CoV-2 wastewater markers and are expected to provide earlier detection of new outbreaks than grab samples, with consequent public health benefits.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - Md Alamin
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - Azadeh Bahmani
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State, Detroit, MI 48201, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Breulmann M, Kallies R, Bernhard K, Gasch A, Müller RA, Harms H, Chatzinotas A, van Afferden M. A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164143. [PMID: 37182773 PMCID: PMC10181866 DOI: 10.1016/j.scitotenv.2023.164143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Wastewater-based monitoring of SARS-CoV-2 has become a promising and useful tool in tracking the potential spread or dynamics of the virus. Its recording can be used to predict how the potential number of infections in a population will develop. Recent studies have shown that the use of passive samplers is also suitable for the detection of SARS-CoV-2 genome copies (GC) in wastewater. They can be used at any site, provide timely data and may collect SARS-CoV-2 GC missed by traditional sampling methods. Therefore, the aim of this study was to evaluate the suitability of passive samplers for the detection of SARS-CoV-2 GC in wastewater in the long-term at two different scales. Polyethylene-based plastic passive samplers were deployed at the city-scale level of Leipzig at 13 different locations, with samples being taken from March 2021 to August 2022. At the smaller city district level, three types of passive samplers (cotton-cloth, unravelled polypropylene plastic rope and polyethylene-based plastic strips) were used and sampled on a weekly basis from March to August 2022. The results are discussed in relation to wastewater samples taken at the individual passive sampling point. Our results show that passive samplers can indicate at a city-scale level an accurate level of positive infections in the population (positive-rate: 86 %). On a small-scale level, the use of passive samplers was also feasible and effective to detect SARS-CoV-2 GC easily and cost-effectively, mirroring a similar trend to that at a city-scale level. Thus, this study demonstrated that passive samplers provide reproducible SARS-CoV-2 GC signals from wastewater and a time-integrated measurement of the sampled matrix with greater sensitivity compared to wastewater. We thus recommend the use of passive samplers as an alternative method for wastewater-based epidemiology. Passive samplers can in particular be considered for a better estimation of infections compared to incidence levels.
Collapse
Affiliation(s)
- Marc Breulmann
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Katy Bernhard
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Gasch
- Wastewater Monitoring Department, Kommunale Wasserwerke Leipzig GmbH, Johannisgasse 7-9, 04103 Leipzig, Germany
| | - Roland Arno Müller
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Manfred van Afferden
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|