1
|
Hashmi MLUR, Hamid Y, Usman M, Luo J, Khan S, Sheng T, Bano N, Bhatti T, Li T. Assessing the effectiveness of 3, 4-dimethylpyrazole phosphate (DMPP) inhibitor in mitigating N 2O emissions from contrasting Cd-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169105. [PMID: 38070566 DOI: 10.1016/j.scitotenv.2023.169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Improving nitrogen use efficiency of chemical fertilizers is essential to mitigate the negative environmental impacts of nitrogen. Nitrification, the conversion of ammonium to nitrate via nitrite by soil microbes, is a prominent source of nitrogen loss in soil systems. The effectiveness of nitrification inhibitors in reducing nitrogen loss through inhibition of nitrification is well-documented, however, their efficacy in heavy metals-contaminated soils needs thorough investigations. The current study assessed the efficacy of nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in reducing nitrous oxide (N2O) emissions in cadmium (Cd) contaminated paddy and red soils under lab-controlled environment. Obtained results indicated the substantial reduction in N2O emissions with DMPP in paddy and red soil by 48 and 35 %, respectively. However, Cd contamination resulted in reduced efficacy of DMPP, thus decreased the N2O emissions by 36 and 25 % in paddy and red soil, respectively. It was found that addition of DMPP had a significant effect on the abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA). Notably, the reduction in N2O emissions by DMPP varied with the abundance of AOB. Moreover, Cd pollution resulted in a significant (P < 0.05) reduction in the abundance of archaeal and bacterial amoA genes, as well as bacterial nirK, nirS, and nosZ genes. The combined treatment of Cd and DMPP had a detrimental impact on denitrifiers, thereby influencing the overall efficiency of DMPP. These findings provide novel insights into the application of DMPP to mitigate nitrification and its potential role in reducing N2O emissions in contaminated soils.
Collapse
Affiliation(s)
- Muhammad Laeeq Ur Rehman Hashmi
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sangar Khan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Tang Sheng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nabila Bano
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Pakistan Tobacco Board, Ministry of National Food Security and Research, Islamabad, Pakistan
| | | | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|