1
|
Zhou Q, Jia L, Li Y, Wu W, Wang J. Deciphering stratified structure and microbiota assembly of biofilms from a pyrite-based biofilter driven by mixotrophic denitrification. BIORESOURCE TECHNOLOGY 2024; 414:131568. [PMID: 39366511 DOI: 10.1016/j.biortech.2024.131568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The precise structure and assembly process of pyrite-based biofilms remain poorly understood. The polysaccharides (PN), proteins (PS), and extracellular DNA were enriched in the soluble extracellular polymeric substance (EPS), loosely bound EPS, and tightly bound EPS, respectively, indicating a significant stratified structure of biofilms. The tryptophan facilitated mixotrophic metabolic processes. Both dominant (>1%) and rare species (<0.01 %) harbored core bacteria, including sulfur autotrophic bacteria, sulfate-reducing bacteria, and heterotrophic bacteria. Furthermore, partial least-squares path modeling quantified the contributions of total phosphorus (TP) (λ = 0.32), dissolved organic matter (DOC) (λ = 0.29), and NH4+-N (λ = 0.26) to variations in the microbial community. Nonmetric multidimensional scaling analysis revealed three distinct stages in biofilm development: colonization (0-36 d), succession (36-149 d), and maturation/old (149-215 d). Furthermore, neutral community model indicated that stochastic processes drove the colonization and maturation/old stages, while deterministic processes dominated the succession stage. This study offered valuable insights into the regulation of pyrite-based engineered ecosystems.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Yang Y, Zhu Y, Gan D, Cai X, Li X, Liu X, Xia S. Enhancing biofilm formation with powder carriers for efficient nitrogen and phosphorus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175812. [PMID: 39197770 DOI: 10.1016/j.scitotenv.2024.175812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
This study assesses the improvement in nitrogen and phosphorus removal from wastewater achieved through the integration of zeolite and attapulgite carrier materials into the activated sludge (AS) process. It was found that the addition of these materials significantly enhanced the processing performance of the reactor. Specifically, the use of zeolite and attapulgite powders increased sludge particle sizes to averages of 231.56 μm and 219.62 μm, respectively. This facilitated micro-granule formation, substantially improving the settling characteristics of the sludge and boosting the activity and proliferation of essential microbes. Illumina MiSeq sequencing demonstrated significant accumulations of DGAOs (Candidatus_Competibacter) and DPAOs (Candidatus_Accumulibacter). Furthermore, these carriers augmented the protein content in extracellular polymers, enhancing the hydrophobicity of the sludge and promoting aggregation. Comparative analysis based on the extended Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory indicated a preferential adhesion affinity of sludge for zeolite compared to attapulgite, attributed primarily to Lewis acid-base and electric double-layer interactions. These findings underscore zeolite's enhanced efficacy in biomass fixation and suggest significant potential for the technological advancement of wastewater treatment plants.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuting Zhu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Defu Gan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xinchao Liu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Liang J, Zheng X, Ning T, Wang J, Wei X, Tan L, Shen F. Revealing the Viable Microbial Community of Biofilm in a Sewage Treatment System Using Propidium Monoazide Combined with Real-Time PCR and Metagenomics. Microorganisms 2024; 12:1508. [PMID: 39203351 PMCID: PMC11356008 DOI: 10.3390/microorganisms12081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial community composition, function, and viability are important for biofilm-based sewage treatment technologies. Most studies of microbial communities mainly rely on the total deoxyribonucleic acid (DNA) extracted from the biofilm. However, nucleotide materials released from dead microorganisms may interfere with the analysis of viable microorganisms and their metabolic potential. In this study, we developed a protocol to assess viability as well as viable community composition and function in biofilm in a sewage treatment system using propidium monoazide (PMA) coupled with real-time quantitative polymerase chain reaction (qPCR) and metagenomic technology. The optimal removal of PMA from non-viable cells was achieved by a PMA concentration of 4 μM, incubation in darkness for 5 min, and exposure for 5 min. Simultaneously, the detection limit can reach a viable bacteria proportion of 1%, within the detection concentration range of 102-108 CFU/mL (colony forming unit/mL), showing its effectiveness in removing interference from dead cells. Under the optimal conditions, the result of PMA-metagenomic sequencing revealed that 6.72% to 8.18% of non-viable microorganisms were influenced and the composition and relative abundance of the dominant genera were changed. Overall, this study established a fast, sensitive, and highly specific biofilm viability detection method, which could provide technical support for accurately deciphering the structural composition and function of viable microbial communities in sewage treatment biofilms.
Collapse
Affiliation(s)
- Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Institute of Environment and Sustainable Development in Agriculture, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| |
Collapse
|
4
|
Zhou Y, Wang C, Xu X, Liu L, Zhang G, Yang F. Advance nitrogen removal from anaerobic sludge digestion liquor using partial nitrification and denitrification coupled with simultaneous partial nitrification, anammox, and denitrification process. BIORESOURCE TECHNOLOGY 2024; 393:130117. [PMID: 38016586 DOI: 10.1016/j.biortech.2023.130117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
A novel two-stage continuous-flow partial nitrification and denitrification coupled with simultaneous partial nitrification, anammox, and denitrification (PND-SNAD) process was developed to treat anaerobic sludge digestion liquor. During the stable phase, the total nitrogen and chemical oxygen demand (COD) removal efficiencies were 93 ± 3 % and 59 ± 7 %, respectively. Free ammonia suppression (26.2 ± 12.7 mg/L) and low dissolved oxygen (DO, 0.12 ± 0.07 mg/L) were key factors in the operation of the PND process, while the SNAD process was restricted successfully by limited oxygen (DO < 0.1 mg/L) and short solids retention time (9.7 d). The PND process was an important pretreatment process that could remove biodegradable dissolved COD by denitrification and supply ammonium-oxidizing bacteria (AOB) to the SNAD process. Nitrosomonas and Ca. Brocadia were the dominant AOB and anammox bacteria, respectively. Overall, this research presents a distinctive SNAD combined process for anaerobic sludge digestion liquor treatment.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China.
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China
| |
Collapse
|
5
|
Liao Y, Fatehi P, Liao B. Microalgae cell adhesions on hydrophobic membrane substrates using quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces 2023; 230:113514. [PMID: 37598610 DOI: 10.1016/j.colsurfb.2023.113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Microalgal cell adhesion and biofilm formation are affected by interactions between microalgae strains and membrane materials. Variations of surface properties of microalgae and membrane materials are expected to affect cell-membranes and cell-cell interactions and thus initial microalgal cell adhesion and biofilm formation rates. Hence, it should be possible to identify the dominant mechanisms controlling microalgal cell adhesion and biofilm formation. The effects of surface properties of three different microalgal strains and three different types of membrane materials on microalgal cell adhesion and biofilm formation were systematically investigated in real time by monitoring changes in the oscillation frequency and dissipation of the quartz crystal resonator (QCM-D). The results revealed that in general a higher surface free energy, more negative zeta potential, and higher surface roughness of membrane materials positively correlated with a larger quantity of microalgae cell deposition, while a more hydrophilic microalgae with a larger negative zeta potential preferred to attach to a more hydrophobic membrane material. The adhered microalgal layers exhibited viscoelastic properties. The relative importance of these mechanisms in controlling microalgae cell attachment and biofilm formation might vary, depending on the properties of specific microalgae species and hydrophobic membrane materials used.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
6
|
Kong B, Jin L, Zhao Y, Huang H, Wang Y, Ren H. Adaptive Evolution Laws of Biofilm under Emerging Pollutant-Induced Stress: Community Assembly-Driven Structure Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10721-10732. [PMID: 37433138 DOI: 10.1021/acs.est.3c01899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The widely used biofilm process in advanced wastewater treatment is currently challenged by numerous exotic emerging pollutants (EPs), and the underlying principle of the challenge is the adaptive evolution laws of biofilm under EP stress. However, there is still a knowledge gap in exploration of the biofilm adaptive evolution theory. Herein, we comprehensively analyzed the morphological variation, community succession, and assembly mechanism of biofilms to report the mechanism underlying their adaptive evolution under sulfamethoxazole and carbamazepine stress for the first time. The ecological role of the dominant species was driven as a pioneer and assembly hub by EP stress, and the deterministic processes indicated the functional basis of the transformation. In addition, the characteristic responses of dispersal limitation and homogenizing dispersal adequately revealed the assembly pathways in adaptive evolution and the resulting structural variation. Therefore, the "interfacial exposure-structural variation-mass transfer feedback" mechanism was inferred to underly the adaptive evolution process of biofilms. Overall, this study highlighted the internal drivers of the adaptive evolution of the biofilm at the phylogenetic level and deepened our understanding of the mechanism of biofilm development under EP stress in advanced wastewater purification.
Collapse
Affiliation(s)
- Boning Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
7
|
Wang XP, Wu Q, Wang X, Fan NS, Jin RC. Research advances in application of mainstream anammox processes: Roles of quorum sensing and microbial metabolism. CHEMOSPHERE 2023; 333:138947. [PMID: 37196790 DOI: 10.1016/j.chemosphere.2023.138947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a low-carbon biological nitrogen removal process, that has been widely applied to treat high-strength wastewater. However, the practical application of mainstream anammox treatment is limited due to the slow growth rate of anammox bacteria (AnAOB). Therefore, it is important to provide a comprehensive summary of the potential impacts and regulatory strategies for system stability. This article systematically reviewed the effects of environmental fluctuations on anammox systems, summarizing the bacterial metabolisms and the relationship between metabolite and microbial functional effects. To address the shortcoming of mainstream anammox process, molecular strategies based on quorum sensing (QS) were proposed. Sludge granulation, gel encapsulation and carrier-based biofilm technologies were adopted to enhance the QS function in microbial aggregation and reduction of biomass loss. Furthermore, this article discussed the application and progress of anammox-coupled processes. Valuable insights were provided for the stable operation and development of mainstream anammox process from the perspectives of QS and microbial metabolism.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qian Wu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xin Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| |
Collapse
|