1
|
Wang Z, Duan R, He Q, Liu H, Xu P, Wei M. Characteristics of airborne bacteria over inland and coastal atmosphere influenced by systemic air mass in northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126429. [PMID: 40368016 DOI: 10.1016/j.envpol.2025.126429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/23/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Regional aerosol pollution frequently occurs in winter and spring in northern China. Here, we surveyed four air pollution, categorized as episodes influenced by northerly or southerly air mass, and discussed the bacterial communities in inland and coastal cities. Influenced by northerly airmass, the predominant bacterial phyla were Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria both in the inland and coastal cities. The opportunistic pathogen in the genus Staphylococcus was predominant, and the relative proportion increased with the intensification of air pollution. Gut bacteria of the genus Lactobacillus and aquatic bacteria of the family Flavobacteriaceae were enriched in the coastal city. Influenced by southerly air mass, combined with the transmission of dust air masses in the northwest, air pollution in spring showed obvious sand dust characteristics. The prevalence of the members from the phylum Cyanobacteria was markedly greater in inland city compared to the coastal city, especially in dust samples. This indicated the possibility of soil Cyanobacteria members, subsequently being transported from terrestrial to coastal areas via dust movements. The bacterial community dynamics was intimately linked to meteorological factors and air pollutants. In both cities, pathogenic bacteria predominate in haze pollution influenced by northernly air masses, while a higher proportion of soil bacteria originating from natural sources predominate in southern air mass samples. The impact of varying air masses was particularly pronounced in inland city. Meteorological factors instigated by seasonal changes-especially the transition of wind direction from winter to spring, accompanied by elevated wind speeds and rising temperatures-play a pivotal role in shaping bacterial community structure. This study examined the sea-land variations in bacterial communities transported by systemic air masses during typical air pollution events. These insights lay the groundwork for future research into the distribution, sources, and health risks of bioaerosols during air pollution.
Collapse
Affiliation(s)
- Zhaowen Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Rongbao Duan
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Qun He
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Pengju Xu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China
| | - Min Wei
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250014, China.
| |
Collapse
|
2
|
Su K, Liang Z, Zhang S, Liao W, Gu J, Guo Y, Li G, An T. The abundance and pathogenicity of microbes in automobile air conditioning filters across the typical cities of China and Europe. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134459. [PMID: 38691999 DOI: 10.1016/j.jhazmat.2024.134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Bioaerosols are widely distributed in urban air and can be transmitted across the atmosphere, biosphere, and anthroposphere, resulting in infectious diseases. Automobile air conditioning (AAC) filters can trap airborne microbes. In this study, AAC filters were used to investigate the abundance and pathogenicity of airborne microorganisms in typical Chinese and European cities. Culturable bacteria and fungi concentrations were determined using microbial culturing. High-throughput sequencing was employed to analyze microbial community structures. The levels of culturable bioaerosols in Chinese and European cities exhibited disparities (Analysis of Variance, P < 0.01). The most dominant pathogenic bacteria and fungi were similar in Chinese (Mycobacterium: 18.2-18.9 %; Cladosporium: 23.0-30.2 %) and European cities (Mycobacterium: 15.4-37.7 %; Cladosporium: 18.1-29.3 %). Bartonella, Bordetella, Alternaria, and Aspergillus were also widely identified. BugBase analysis showed that microbiomes in China exhibited higher abundances of mobile genetic elements (MGEs) and biofilm formation capacity than those in Europe, indicating higher health risks. Through co-occurrence network analysis, heavy metals such as zinc were found to correlate with microorganism abundance; most bacteria were inversely associated, while fungi exhibited greater tolerance, indicating that heavy metals affect the growth and reproduction of bioaerosol microorganisms. This study elucidates the influence of social and environmental factors on shaping microbial community structures, offering practical insights for preventing and controlling regional bioaerosol pollution.
Collapse
Affiliation(s)
- Kaifei Su
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Simeng Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Liao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Gu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunlong Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Peng S, Luo M, Long D, Liu Z, Tan Q, Huang P, Shen J, Pu S. Full-length 16S rRNA gene sequencing and machine learning reveal the bacterial composition of inhalable particles from two different breeding stages in a piggery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114712. [PMID: 36863163 DOI: 10.1016/j.ecoenv.2023.114712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Bacterial loading aggravates the harm of particulate matter (PM) to public health and ecological systems, especially in operations of concentrated animal production. This study aimed to explore the characteristics and influencing factors of bacterial components of inhalable particles at a piggery. The morphology and elemental composition of coarse particles (PM10, aerodynamic diameter ≤ 10 µm) and fine particles (PM2.5, aerodynamic diameter ≤ 2.5 µm) were analyzed. Full-length 16 S rRNA sequencing technology was used to identify bacterial components according to breeding stage, particle size, and diurnal rhythm. Machine learning (ML) algorithms were used to further explore the relationship between bacteria and the environment. The results showed that the morphology of particles in the piggery differed, and the morphologies of the suspected bacterial components were elliptical deposited particles. Full-length 16 S rRNA indicated that most of the airborne bacteria in the fattening and gestation houses were bacilli. The analysis of beta diversity and difference between samples showed that the relative abundance of some bacteria in PM2.5 was significantly higher than that in PM10 at the same pig house (P < 0.01). There were significant differences in the bacterial composition of inhalable particles between the fattening and gestation houses (P < 0.01). The aggregated boosted tree (ABT) model showed that PM2.5 had a great influence on airborne bacteria among air pollutants. Fast expectation-maximization microbial source tracking (FEAST) showed that feces was a major potential source of airborne bacteria in pig houses (contribution 52.64-80.58 %). These results will provide a scientific basis for exploring the potential risks of airborne bacteria in a piggery to human and animal health.
Collapse
Affiliation(s)
- Siyi Peng
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Min Luo
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing 402460, China; Innovation and Entrepreneurship Team for Livestock Environment Control and Equipment R&D, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China; College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Qiong Tan
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China
| | - Ping Huang
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China
| | - Jie Shen
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, No. 51, Changlong Avenue, Rong chang District, Chongqing 402460, China; Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing 402460, China; Innovation and Entrepreneurship Team for Livestock Environment Control and Equipment R&D, Chongqing 402460, China; National Center of Technology Innovation for pigs, Chongqing 402460, China.
| |
Collapse
|