1
|
Fernández-Domínguez D, Magdalena JA, Trably E, Patureau D, Jimenez J. The effect of a two-stage anaerobic digestion on digestates: Organic matter quality and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125590. [PMID: 40319698 DOI: 10.1016/j.jenvman.2025.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
The impact of a two-stage anaerobic digestion (AD) system integrating a dark fermentation (DF) step prior to AD, referred to as DF-AD2, on the organic matter (OM) quality and the microbial communities in anaerobic digestates was investigated. Two treatment routes (one-stage AD (AD1) and DF-AD2) were compared by advanced characterization using the same feedstock and treatment duration. The DF-AD2 improved the percentage of CH4 during AD2 by 8.3 % and the volatile solids removal by 6.8 % compared to AD1. The DF step increased the dissolved OM and mineralized nitrogen after AD despite similar OM complexity and predicted carbon mineralization in soils. Moreover, respirometry tests related the enhanced bioaccessibility of DF effluent to greater biological activity (126.3 ± 5.8 mg O2) compared to the substrate (51.1 ± 5.8 mg O2). Nonetheless, DF-AD2 did not impact the biological stability of digestates (32.09 ± 1.1 and 30.2 ± 1.5 mg O2 for AD1 and DF-AD2, respectively). Low-stress operational conditions of the tests might smooth the DF-AD2 effect on digestate biological stability and microbial communities. Archaea varied after DF but homogenized during AD2, with the genus Methanosarcina comprising 71-79 % of the relative abundance. Concurrently, the orders Bacteroidales, Spirochaetales and Cloacimonadales dominated Bacteria in both AD1 and AD2. Overall, this study evidence that a DF-AD2 system is a feasible way to improve both OM removal and the nitrogen fertilizing value of digestates, without hindering digestate biological stability or microbial communities. However, optimizing operational parameters and pre-treatment processes may be necessary to enhance the system's energy output.
Collapse
Affiliation(s)
| | - Jose Antonio Magdalena
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100, Narbonne, France; Vicerrectorado de Investigacion y Transferencia de la Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Eric Trably
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100, Narbonne, France
| | - Dominique Patureau
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100, Narbonne, France
| | - Julie Jimenez
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100, Narbonne, France
| |
Collapse
|
2
|
Zeng D, Ma M, Huang X, Zhang C. Total-solids-controlled microbial response and volatile fatty acids production in sludge and chicken manure co-fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124253. [PMID: 39854901 DOI: 10.1016/j.jenvman.2025.124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
With the aim of exploring the association between microbial response and volatile fatty acids (VFAs) production in sludge and chicken manure co-fermentation with total solids (TS) controlled, four fermentation experimental groups (TS = 20, 40, 60, and 80 g/L) were established in this study. The results demonstrated that the yield of VFAs reached the peak (530.08 mg COD/g VSS) at the 40 g-TS group. For microbial characteristics, Firmicutes, Bacteroidota, Spirochaetota, and Proteobacteria were the main dominant phyla in each experimental group. Meanwhile, it could be proven that the enrichment of functional strains had a significant effect on the production and accumulation of VFAs at the 40 g-TS group through α analysis and microbial community structure analysis. In addition, Bacteroidota was predicted to be the main producer of VFAs in the experimental co-fermentation systems through the Faprotax function prediction. This study revealed the effects of different TS concentrations on microbial communities in sludge and chicken manure co-fermentation, and investigated the relationship between microbial community and VFAs production.
Collapse
Affiliation(s)
- Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mengsha Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Chengdai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
3
|
Ansari SA, Kumar T, Sawarkar R, Gobade M, Khan D, Singh L. Valorization of food waste: A comprehensive review of individual technologies for producing bio-based products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121439. [PMID: 38870792 DOI: 10.1016/j.jenvman.2024.121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The escalating global concerns about food waste and the imperative need for sustainable practices have fuelled a burgeoning interest in the valorization of food waste. This comprehensive review delves into various technologies employed for converting food waste into valuable bio-based products. The article surveys individual technologies, ranging from traditional to cutting-edge methods, highlighting their respective mechanisms, advantages, and challenges. SCOPE AND APPROACH The exploration encompasses enzymatic processes, microbial fermentation, anaerobic digestion, and emerging technologies such as pyrolysis and hydrothermal processing. Each technology's efficacy in transforming food waste into bio-based products such as biofuels, enzymes, organic acids, prebiotics, and biopolymers is critically assessed. The review also considers the environmental and economic implications of these technologies, shedding light on their sustainability and scalability. The article discusses the role of technological integration and synergies in creating holistic approaches for maximizing the valorization potential of food waste. Key finding and conclusion: This review consolidates current knowledge on the valorization of food waste, offering a comprehensive understanding of individual technologies and their contributions to the sustainable production of bio-based products. The synthesis of information presented here aims to guide researchers, policymakers, and industry stakeholders in making informed decisions to address the global challenge of food waste while fostering a circular and eco-friendly economy.
Collapse
Affiliation(s)
- Suhel A Ansari
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Tinku Kumar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Riya Sawarkar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Mahendra Gobade
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Debishree Khan
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Lal Singh
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| |
Collapse
|
4
|
Perez-Esteban N, Vives-Egea J, Peces M, Dosta J, Astals S. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:176-185. [PMID: 38401431 DOI: 10.1016/j.wasman.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
This work aims to improve the continuous co-fermentation of waste activated sludge (WAS) and food waste (FW) by investigating the long-term impact of temperature on fermentation performance and the underpinning microbial community. Acidogenic co-fermentation of WAS and FW (70:30 % VS-basis) to produce volatile fatty acids (VFA) was studied in continuous fermenters at different temperatures (25, 35, 45, 55 °C) at an organic loading rate of 11 gVS/(L·d) and a hydraulic retention time of 3.5 days. Two batches of WAS (A and B) were collected from the same wastewater treatment plant at different periods to understand the impact of the WAS microbioota on the fermenters' microbial communities. Solubilisation yield was higher at 45 °C (575 ± 68 mgCOD/gVS) followed by 55 °C (508 ± 45 mgCOD/gVS). Fermentation yield was higher at 55 °C (425 ± 28 mgCOD/gVS) followed by 35 °C (327 ± 17 mgCOD/gVS). Temperature also had a noticeable impact on the VFA profile. At 55 °C, acetic (40 %) and butyric (40 %) acid dominated, while acetic (37 %), butyric acid (31 %), and propionic acid (17 %) dominated at 35 °C. At 45 °C, an accumulation of caproic acid was detected which did not occur at other temperatures. Each temperature had a distinct microbial community, where the WAS microbiota played an important role. The biomass mass-balance showed the highest growth of microorganisms (51 %) at 35 °C and WAS_B, where a consumption of acetic acid was observed. Therefore, at 35 °C, there is a higher risk of acetic acid consumption probably due to the proliferation of methanogens imported from WAS.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Vives-Egea
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
5
|
Qin W, Han S, Meng F, Chen K, Gao Y, Li J, Lin L, Hu E, Jiang J. Impacts of seasonal variation on volatile fatty acids production of food waste anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168764. [PMID: 38000740 DOI: 10.1016/j.scitotenv.2023.168764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
This study aims to investigate the influence of seasonal variations on Volatile fatty acids (VFAs) production from food waste (FW) and to quantify their impact. Results of batch experiments with external pH control indicated that the properties of FW exhibited significant seasonal variations and were markedly different from kitchen waste (KW). The spring group demonstrated the highest VFA concentration and VFA/SCOD, at 31.24 g COD/L and 92.20 % respectively, which were 1.22 and 1.27 times higher than those observed in the summer season. The combined proportion of acetic acid and butyric acid accounted for 81.10 % of the total VFAs in spring, suggesting the highest applicability to the carbon source. The VFA content of all seasonal groups in descending order was butyric acid, propionic acid and acetic acid. Carbohydrates, along with spicy and citrusy substances, promoted the conversion of total VFA and butyric acid, while proteins and lipids favored the production of acetic acid and propionic acid.
Collapse
Affiliation(s)
- Weikai Qin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fanzhi Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Kailun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Endian Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Fermoso FG, Hidalgo C, Trujillo-Reyes A, Cubero-Cardoso J, Serrano A. Effect of harvesting time in the methane production on the anaerobic digestion of microalgae. ENVIRONMENTAL TECHNOLOGY 2024; 45:827-834. [PMID: 36151908 DOI: 10.1080/09593330.2022.2128893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are being proposed as excellent substrates for different biorefinery processes. Anaerobic digestion process of microalgae is one of these interesting processes but has some limitations in deleting cell walls. For this reason, many studies proposed different types of pre-treatments, entailing energy, operation, and investment costs. This work aims to optimize the anaerobic digestion of the microalgae Chlorella sorokiniana and Chlorella sorokiniana (strain S12/S13/S16) without any pre-treatment by selecting the optimal harvesting time. The greatest influence is seen at 5:00 PM in methane production for both microalgae. For Chlorella sorokiniana, it is the most optimal moment for anaerobic digestion, whereas Chlorella sorokiniana (strain S12/S13/S16) is the least optimal. In the other harvesting times, both microalgae present a similar methane production, i.e. 173 ± 12 mL CH4/g of total volatile solids. The highest methane production rate values were obtained during peak sunlight, 1:00 PM and 8:00 AM, respectively, and lower overnight.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada, Spain
- Department of Microbiology, Pharmacy Faculty, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Jiang W, Tao J, Luo J, Xie W, Zhou X, Cheng B, Guo G, Ngo HH, Guo W, Cai H, Ye Y, Chen Y, Pozdnyakov IP. Pilot-scale two-phase anaerobic digestion of deoiled food waste and waste activated sludge: Effects of mixing ratios and functional analysis. CHEMOSPHERE 2023; 329:138653. [PMID: 37044139 DOI: 10.1016/j.chemosphere.2023.138653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Anaerobic co-digestion of deoiled food waste (dFW) and waste activated sludge (WAS) can address the challenges derived from mono-digestion of FW. In the present study, a pilot-scale methanogenic bioreactor of a two-phase anaerobic digestion system was developed to explore the impact of dFW/WAS volatile solids ratios on the overall performance, microbial community, and metabolic pathways. Besides, the tech-economic of the system was analyzed. The results showed that the degradation efficiency of soluble chemical oxygen demand (SCOD) was more than 84.90% for all the dFW/WAS ratios (v/v) (1:0, 39:1, 29:1, 19:1 and 9:1). Moreover, the dominant genus of bacteria and archaea with different ratios were Lactobacillus (66.84-98.44%) and Methanosaeta (53.66-80.09%), respectively. Co-digestion of dFW and WAS (29: 1 in v/v ratios) obtained the highest yield of methane (0.41 L CH4/Ladded) with approximately 90% of SCOD being removed. In the pilot-scale experiment, the co-digestion of FW and WAS makes positive contribution to reusing solid waste for improving solid management.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiale Tao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiwu Luo
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Wengang Xie
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Xiaojuan Zhou
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Boyi Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Hui Cai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| |
Collapse
|
8
|
Diaz R, Goswami A, Clark HC, Michelson R, Goel R. Volatile fatty acid production from primary and secondary sludges to support efficient nutrient management. CHEMOSPHERE 2023:138984. [PMID: 37315862 DOI: 10.1016/j.chemosphere.2023.138984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Enhanced hydrolysis of sludges during fermentation is an important factor to achieve solubilization of complex carbon sources and increase the amount of soluble COD that microorganisms could use as food during biological nutrient removal processes. This research shows that a combination of mixing, bioaugmentation, and co-fermentation can be used to increase the hydrolysis of sludges and enhanced the production of volatile fatty acids (VFA). Mixing of primary sludge (PS) at 350 revolutions per minute (RPM) during fermentation increased the hydrolysis of the sludge and increased the soluble chemical oxygen demand (sCOD) by 72% compared to no mixing. Mixing also increased the production of VFA by 60% compared to no mixing conditions. PS hydrolysis was also evaluated using bioaugmentation with the bacteria Bacillus amyloliquefacients, a known producer of the biosurfactant surfactin. Results showed that bioaugmentation enhanced the hydrolysis of the PS by increasing the amount of soluble carbohydrates and soluble proteins present in the form of sCOD. Methanogenesis experiments performed with co-fermentation of decanted primary sludge (PS) and raw waste-activated sludge (WAS) at 75:25 and 50:50 ratios displayed a decreased in production of total biogas by 25.58% and 20.95% and a reduction on methane production by 20.00% and 28.76% respectively, compared to co-fermentation of raw sludges. Compared to fermentation of the sludges separately, co-fermentation of PS and WAS increased the production of VFA and it was determined that 50:50 was the optimum co-fermentation ratio for production of VFA while reducing the reintroduction of nutrients produced during the fermentation process to BNR processes.
Collapse
Affiliation(s)
- Ruby Diaz
- Civil & Environmental Engineering, University of Utah, Salt Lake City, USA
| | - Anjan Goswami
- Civil & Environmental Engineering, University of Utah, Salt Lake City, USA
| | - Herald C Clark
- Civil & Environmental Engineering, University of Utah, Salt Lake City, USA
| | | | - Ramesh Goel
- Civil & Environmental Engineering, University of Utah, Salt Lake City, USA.
| |
Collapse
|