1
|
Sannoh F, Fatmi Z, Carpenter DO, Santoso M, Siddique A, Khan K, Zeb J, Hussain MM, Khwaja HA. Air pollution we breathe: Assessing the air quality and human health impact in a megacity of Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173403. [PMID: 38844217 DOI: 10.1016/j.scitotenv.2024.173403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
With 24 million inhabitants and 6.6 million vehicles on the roads, Karachi, Pakistan ranks among the world's most polluted cities due to high levels of fine particulate matter (PM2.5). This study aims to investigate PM2.5 mass, seasonal and temporal variability, chemical characterization, source apportionment, and health risk assessment at two urban sites in Karachi. Samples were analyzed using ion chromatography and dual-wavelength optical transmissometer for various inorganic components (anions, cations, and trace elements) and black carbon (BC). Several PM2.5 pollution episodes were frequently observed, with annual mean concentrations at Kemari (140 ± 179 μg/m3) and Malir (95 ± 40.9 μg/m3) being significantly above the World Health Organization's guidelines of 5 μg/m3. Chemical composition at both sites exhibited seasonal variability, with higher pollution levels in winter and fall and lower concentrations in summer. The annual average BC concentrations were 4.86 ± 5.29 μg/m3 and 4.52 ± 3.68 μg/m3, respectively. A Positive Matrix Factorization (PMF) analysis identified 5 factors, crustal, sea salt, vehicular exhaust, fossil-fuel combustion, and industrial emission. The health risk assessment indicated a higher number of deaths in colder seasons (fall and winter) at the Kemari (328,794 and 287,814) and Malir (228,406 and 165,737) sites and potential non-carcinogenic and carcinogenic risks to children from metals. The non-carcinogenic risk of PM2.5 bound Pb, Fe, Zn, Mn, Cr, Cu and Ni via inhalation exposure were within the acceptable level (<1) for adults. However, potential non-carcinogenic and carcinogenic health risk posed by Pb and Cr through inhalation were observed for children. The findings exhibit critical levels of air pollution that exceed the safe limits in Karachi, posing significant health risks to children and sensitive groups. Our study underscores the urgent need for effective emission control strategies and policy interventions to mitigate these air pollution risks.
Collapse
Affiliation(s)
- Fatim Sannoh
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - Zafar Fatmi
- Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - David O Carpenter
- Institute for the Health and the Environment, University at Albany, Albany, NY, United States
| | | | - Azhar Siddique
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kamran Khan
- Chemistry Department, University of Karachi, Karachi, Pakistan
| | - Jahan Zeb
- Department of Environmental and Health Research, The Custodian of the Holy Two Mosques Institute for Hajj and Umra Research, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mirza M Hussain
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - Haider A Khwaja
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, United States.
| |
Collapse
|
2
|
Wang C, Luo L, Xu Z, Liu S, Li Y, Ni Y, Kao SJ. Assessment of Secondary Sulfate Aqueous-Phase Formation Pathways in the Tropical Island City of Haikou: A Chemical Kinetic Perspective. TOXICS 2024; 12:105. [PMID: 38393200 PMCID: PMC10892436 DOI: 10.3390/toxics12020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Sulfate (SO42-) is an essential chemical species in atmospheric aerosols and plays an influential role in their physical-chemical characteristics. The mechanisms of secondary SO42- aerosol have been intensively studied in air-polluted cities. However, few studies have focused on cities with good air quality. One-year PM2.5 samples were collected in the tropical island city of Haikou, and water-soluble inorganic ions, as well as water-soluble Fe and Mn, were analyzed. The results showed that non-sea-salt SO42- (nss-SO42-) was the dominant species of water-soluble inorganic ions, accounting for 40-57% of the total water-soluble inorganic ions in PM2.5 in Haikou. The S(IV)+H2O2 pathway was the main formation pathway for secondary SO42- in wintertime in Haikou, contributing to 57% of secondary SO42- formation. By contrast, 54% of secondary SO42- was produced by the S(IV)+Fe×Mn pathway in summer. In spring and autumn, the S(IV)+H2O2, S(IV)+Fe×Mn, and S(IV)+NO2 pathways contributed equally to secondary SO42- formation. The ionic strength was the controlling parameter for the S(IV)+NO2 pathway, while pH was identified as a key factor that mediates the S(IV)+H2O2 and S(IV)+Fe×Mn pathways to produce secondary SO42-. This study contributes to our understanding of secondary SO42- production under low PM2.5 concentrations but high SO42- percentages.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Li Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Marine Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Zifu Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361104, China
| | - Shuhan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Marine Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Yuxiao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yuanzhe Ni
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Wang H, Li J, Wu T, Ma T, Wei L, Zhang H, Yang X, Munger JW, Duan FK, Zhang Y, Feng Y, Zhang Q, Sun Y, Fu P, McElroy MB, Song S. Model Simulations and Predictions of Hydroxymethanesulfonate (HMS) in the Beijing-Tianjin-Hebei Region, China: Roles of Aqueous Aerosols and Atmospheric Acidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1589-1600. [PMID: 38154035 DOI: 10.1021/acs.est.3c07306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Hydroxymethanesulfonate (HMS) has been found to be an abundant organosulfur aerosol compound in the Beijing-Tianjin-Hebei (BTH) region with a measured maximum daily mean concentration of up to 10 μg per cubic meter in winter. However, the production medium of HMS in aerosols is controversial, and it is unknown whether chemical transport models are able to capture the variations of HMS during individual haze events. In this work, we modify the parametrization of HMS chemistry in the nested-grid GEOS-Chem chemical transport model, whose simulations provide a good account of the field measurements during winter haze episodes. We find the contribution of the aqueous aerosol pathway to total HMS is about 36% in winter in Beijing, due primarily to the enhancement effect of the ionic strength on the rate constants of the reaction between dissolved formaldehyde and sulfite. Our simulations suggest that the HMS-to-inorganic sulfate ratio will increase from the baseline of 7% to 13% in the near future, given the ambitious clean air and climate mitigation policies for the BTH region. The more rapid reductions in emissions of SO2 and NOx compared to NH3 alter the atmospheric acidity, which is a critical factor leading to the rising importance of HMS in particulate sulfur species.
Collapse
Affiliation(s)
- Haoqi Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Jiacheng Li
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Ting Wu
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Eco-Environmental Sciences, Tianjin 300191, China
| | - Tao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hailiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xi Yang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - J William Munger
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Feng-Kui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Michael B McElroy
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Li T, Li J, Xie L, Lin B, Jiang H, Sun R, Wang X, Liu B, Tian C, Li Q, Jia W, Zhang G, Peng P. In situ biomass burning enhanced the contribution of biogenic sources to sulfate aerosol in subtropical cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168384. [PMID: 37956844 DOI: 10.1016/j.scitotenv.2023.168384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Sulfurous gases released by biogenic sources play a key role in the global sulfur cycle. However, the contribution of biogenic sources to sulfate aerosol in the urban atmosphere has received little attention. Emission sources and formation process of sulfate in Guangzhou, a subtropical mega-city in China, were clarified using multiple methods, including isotope tracers and chemical markers. The δ18O of sulfate suggested that secondary sulfate was the dominant component (84 %) of sulfate aerosol, which mainly formed by transition metal ion (TMI) catalyzed oxidation (31 %) and OH radical oxidation (30 %). The factors driving secondary sulfate formation were revealed using a tree boosting model, which suggested that NH3, temperature, and oxidants were the most important factors. The δ34S of sulfate indicated that biogenic sources accounted for annual average of 26.0 % of the sulfate, which increased to 30.4 % in winter monsoon period. Rice straw burning enhanced sulfate formation by promoting the release of reduced sulfur from soil, which is rapidly converted into sulfate under a subtropical urban atmosphere with high concentration of NH3 and oxidants. This study revealed the important influence of rice straw burning on biogenic sulfur emission during the rice harvest, thereby providing insight into the sulfur cycle and regional air pollution.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China.
| | - Luhua Xie
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China.
| | - Boji Lin
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongxing Jiang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Rong Sun
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiao Wang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben Liu
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| |
Collapse
|
5
|
Duan X, Yan Y, Xie K, Niu Y, Xu Y, Peng L. Impact of primary emission variations on secondary inorganic aerosol formation: Prospective from COVID-19 lockdown in a typical northern China city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121355. [PMID: 36842622 DOI: 10.1016/j.envpol.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Hourly observations in northern China city of Taiyuan were performed to compare secondary inorganic aerosol (SIA) reaction mechanisms, and emission effects on SIA during the pre-lock and COVID-19 lock days. Emission control implemented and meteorological conditions during lock days both caused beneficial impact on air quality. NO2 showed the highest decrease ratio of -49.5%, while the relative fraction of NO3- in PM2.5 increased the most (2.7%). Source apportionment revealed the top three contributors to PM2.5 were secondary formation (SF), coal combustion (CC), and vehicle exhaust (VE) during both pre-lock and lock days. EC lock/pre were all lower than 1, suggesting the overall reduction of primary emissions during lock days, while the higher ratio of (SIA/EC) lock/pre (1.01-1.36) indicated the enhanced secondary formation in lock days. The ratio of SIA of pollution to clean days during lock periods considerably higher by 23.7% compared with that in pre-lock periods, which was indicated SIA secondary formation was more pronounced and contributed great to pollution days in lock periods though secondary formation existed in pre-lock and lock periods. Enhanced secondary formation of NO3- and SO42- during lock days might be mainly due to the increased in aqueous and gas-phase reactions, respectively. Except for SF, high contribution of VE and CC were also important for high SIA concentration in pre-lock and lock days, respectively. The decreased contribution of VE weakens its contribution to SIA formation, indicating the effectiveness of VE emission control, as confirmed during the COVID-19 pandemic. This study highlights the aqueous and gas-phase reactions for nitrate and sulfate, respectively, which contributed to heavy pollution, as well as indicated the important role of VE on SIA formation, suggesting the urgent need to further strengthen controls on vehicle emissions.
Collapse
Affiliation(s)
- Xiaolin Duan
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yulong Yan
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Kai Xie
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yueyuan Niu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yang Xu
- School for Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Lin Peng
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|