1
|
Liu R, Ji W, Min J, Wen P, Li Y, Hu J, Yin L, He G. Efficient Removal of Cationic Dye by Biomimetic Amorphous Calcium Carbonate: Behavior and Mechanisms. Molecules 2024; 29:5426. [PMID: 39598815 PMCID: PMC11597820 DOI: 10.3390/molecules29225426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The search for efficient, environmentally friendly adsorbents is critical for purifying dye wastewater. In this study, we produced a first-of-its-kind effective biomimetic amorphous calcium carbonate (BACC) using bacterial processes and evaluated its capacity to adsorb a hazardous organic cationic dye-methylene blue (MB). BACC can adsorb a maximum of 494.86 mg/g of MB, and this excellent adsorption performance was maintained during different solution temperature (10-55 °C) and broad pH (3-12) conditions. The favorable adsorption characteristics of BACC can be attributable to its hydrophobic property, porosity, electronegativity, and perfect dispersity in aqueous solution. During adsorption, MB can form Cl-Ca, S-O, N-Ca, and H-bonds on the surface of BACC. Since BACC has excellent resistance to adsorption interference in different water bodies and in real dye wastewater, and can also be effectively recycled six times, our study is an important step forward in dye wastewater treatment applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Genhe He
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Sciences, Jinggangshan University, Ji’an 343009, China; (R.L.); (W.J.); (J.M.); (P.W.); (Y.L.); (J.H.); (L.Y.)
| |
Collapse
|
2
|
Tu Z, Ou H, Ran Y, Xue H, Zhu F. Chitosan-based biopolyelectrolyte complexes intercalated montmorillonite: A strategy for green flame retardant and mechanical reinforcement of polypropylene composites. Int J Biol Macromol 2024; 277:134316. [PMID: 39094859 DOI: 10.1016/j.ijbiomac.2024.134316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Due to dwindling petroleum resources and the need for environmental protection, the development of bio-based flame retardants has received much attention. In order to explore the feasibility of fully biomass polyelectrolyte complexes (PEC) for polyolefin flame retardant applications, chitosan (CS), sodium alginate (SA), and sodium phytate (SP) were used to prepare CS-based fully biomass PEC intercalated montmorillonite (MMT) hybrid biomaterials (SA-CS@MMT and SP-CS@MMT). The effects of two hybrid biomaterials on the fire safety and mechanical properties of intumescent flame-retardant polypropylene (PP) composites were compared. The SP-CS@MMT showed the best flame retardancy and toughening effect at the same addition amount. After adding 5 wt% SP-CS@MMT, the limiting oxygen index (LOI) value of PP5 reached 30.9 %, and the peak heat release rate (pHRR) decreased from 1348 kW/m2 to 163 kW/m2. In addition, the hydrogen bonding between polyelectrolyte complexes significantly improved the mechanical properties of PP composites. Compared with PP2, the tensile strength of PP5 increased by 59 %. This study provided an efficient and eco-friendly strategy for the large-scale production of renewable biomaterials with good thermal stability and expanded the application of macromolecular biomaterials in the field of fire safety.
Collapse
Affiliation(s)
- Zhe Tu
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Hongxiang Ou
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China.
| | - Yining Ran
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Honglai Xue
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Fang Zhu
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| |
Collapse
|
3
|
Luan J, Zhao C, Zhai Q, Liu W, Ke X, Liu X, Tao J. The deconstruction and recombination of endogenous active units of carbon@chitosan@montmorillonite nanosheet microsphere adsorbent caused by cadmium and copper cations benefit for high adsorption performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52997-53006. [PMID: 36849686 DOI: 10.1007/s11356-023-26060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The highly efficient removal of heavy metals is one of the important factors to evaluate adsorbents. In our study, carbon@chitosan@montmorillonite nanosheet (C@CS@MTN) was successfully prepared via layer-by-layer assembly for the removal of Cu2+ and Cd2+ from solution. High-intensity ultrasound peeling technology was used to release Si-O tetrahedron and Al-O octahedron from montmorillonite in order to exert their optimal adsorption potential. Fourier transform infrared spectroscopy, an X-ray diffractometer, BET surface area measurement, and the inductively coupled plasma emission spectrometry were adopted to investigate the morphology, functional groups, and adsorption capacity of C@CS@MTN. Batch experiment results indicated that both Cu2+ and Cd2+ were effectively removed from solution with the range of pH from 2 to 6. The removal ratio of Cu2+ and Cd2+ onto C@CS@MTN increased with the rise of reaction temperature and their maximum adsorption capacities reached 1108.8 mg·g-1 and 237.4 mg·g-1, respectively, under the condition of the reaction temperature 40 °C, the reaction time 4 h, and the pH = 6. The molecular simulation calculation indicated that there was an obvious electron transfer between Si-O tetrahedron and metal cations, but not for Al-O octahedron. In comparison to Al-O octahedron, the bonding of Cu-O and Cd-O caused the Si-O bond to be broken, resulting in the deconstruction of Si-O tetrahedron and their recombination via the junction of O atoms. It was exactly the deconstruction and recombination of endogenous active units that provide more sites for metal ion adsorption.
Collapse
Affiliation(s)
- Jingde Luan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
- College of Energy and Environment, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenbei New Area, Shenyang, 110136, People's Republic of China
| | - Chen Zhao
- College of Energy and Environment, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenbei New Area, Shenyang, 110136, People's Republic of China
| | - Qian Zhai
- College of Energy and Environment, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenbei New Area, Shenyang, 110136, People's Republic of China
| | - Wengang Liu
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Xin Ke
- College of Energy and Environment, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenbei New Area, Shenyang, 110136, People's Republic of China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China.
| | - Jialu Tao
- Liaoning Institute of Measurement, No. 37, Lane 3 Wenhua Road, Heping District, Shenyang, 110004, China
| |
Collapse
|
4
|
Hong F, Wang M, Dong B, Diao X, Zhang X, Pang K, Zhang Y, Hou D. Molecular Insight into the Pozzolanic Reaction of Metakaolin and Calcium Hydroxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3601-3609. [PMID: 36848440 DOI: 10.1021/acs.langmuir.2c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The reaction mechanism of the pozzolanic reaction of metakaolin (MK) from the atomic point of view has not yet been explored. To explain the process and mechanism of the pozzolanic reaction from the atomic point of view, molecular insight into the pozzolanic reaction of MK and calcium hydroxide (CH) was analyzed through the reaction molecular dynamics (MD) simulation. The results show that the pozzolanic reaction of MK and CH can be essentially regarded as the CH decomposition and penetration into MK. Also, the structure evolution after the pozzolanic reaction shows that the water molecules cannot penetrate the MK structure till the participation of Ca2+ and OH- ions of CH. The Ca2+ and OH- ions have strong interaction with MK and drill into the MK structure, followed by the destruction of a part of the MK structure and water penetration. The final structure of CH removed by MK can be regarded as the precursor of the CASH gel structure.
Collapse
Affiliation(s)
- Fen Hong
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Biqin Dong
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoxiang Diao
- Tianjin Housing Group Construction Engineering General Contraction Co., Ltd., Tianjin 300000, China
| | | | - Kai Pang
- China Construction Port Group Co., Ltd., Qingdao 266033, China
| | - Yongmin Zhang
- China Construction Port Group Co., Ltd., Qingdao 266033, China
| | - Dongshuai Hou
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
5
|
Adsorption modeling of tetracycline removal by multi-walled carbon nanotube functionalized with aspartic acid and poly-pyrrole using Bayesian optimized artificial neural network. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
He F, Ma B, Wang C, Chen Y, Hu X. Adsorption of Pb(II) and Cd(II) hydrates via inexpensive limonitic laterite: Adsorption characteristics and mechanisms. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Luan J, Zhao C, Zhai Q, Liu W, Ke X, Liu X. The highly efficient simultaneous removal of Pb 2+ and methylene blue induced by the release of endogenous active sites of montmorillonite. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2336-2347. [PMID: 36378183 DOI: 10.2166/wst.2022.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The inherent periodic structure of montmorillonite limits the adsorption capacity of its endogenous active units such as Si-O tetrahedron and Al-O octahedron for pollutants. The high-intensity ultrasound method was used to release these active units and the layer-by-layer assembly was adopted to prepare carbon@chitosan@montmorillointe microsphere adsorbent (C@CS@Mt) to give full play to the adsorption capacity of montmorillonite. The montmorillonite nanosheet exhibited good hole-making ability, resulting in high surface area, pore volume and pore diameter of microspheres. Benefitting from the release of active sites in Si-O tetrahedron and Al-O octahedron of montmorillonite nanosheets, the adsorption capacity of C@CS@Mt was significantly improved. The maximum adsorption capacities of Pb2+ and methylene blue (MB) reached 884.19 mg·g-1 and 326.21 mg·g-1, respectively. The simultaneous adsorption experiments indicated that the occupation of active sites by Pb2+ caused the observed decrease of MB adsorption capacity. The theoretical calculations indicated that Pb was preferentially adsorbed by active adsorption units due to strong electron donating ability in comparison to MB. As an active unit, Si-O tetrahedron exhibited stronger adsorption capacity for cationic dyes than Al-O octahedron due to both the large electronegativity and lower adsorption binding energy.
Collapse
Affiliation(s)
- Jingde Luan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China E-mail: ; College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Chen Zhao
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Qian Zhai
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Wengang Liu
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Xin Ke
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China E-mail:
| |
Collapse
|