1
|
Yan M, Wang C, Wu H, Wu T, Fang L, Han X. Screening, identification and functional validation of Microcystin-LR direct binding target proteins based on thermal proteomics profiling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178047. [PMID: 39675292 DOI: 10.1016/j.scitotenv.2024.178047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Microcystin-LR (MC-LR) is one of the most common harmful cyanobacterial toxin and poses a serious threat to human health and ecosystems. The accepted toxic effect of MC-LR is to inhibit its enzymatic activity by covalently binding to protein phosphatase 2A (PP2A). However, numerous researches have revealed that the toxic effects of MC-LR are not solely dependent on PP2A. To date, there have been no relevant reports of MC-LR binding to other exact targets to produce toxic effects, and there is an urgent need to decipher the potential direct targets of MC-LR. Thermal proteome profiling (TPP) is a novel technique for the identification of active small molecule target proteins based on the principle that protein-ligand binding can increase the thermal stability of proteins. For this purpose, we used the TPP technique in combination with SWATH-DIA mass spectrometry to systematically assess the changes in the thermal stability of the proteins, thus searching for potential direct-acting target proteins of MC-LR. The results showed that 129 proteins, including PP2A, were potential binding targets of MC-LR. Bioinformatics analysis of 129 proteins enriched for response to dopamine, proteasome complex, and NF-kappaB binding was consistent with previous MC-LR toxicity studies. MC-LR could directly bind to target proteins such as PSMD4, PSMB9, HDAC2, and MAPK1 by CETSA-Western blot and MST assay. It was further confirmed by functional validation that MC-LR may lead to inhibition of proteasome activity through binding to PSMD4/PSMB9, suggesting that the proteasome is one of the toxic targets of MC-LR. This study reveals the existence of multiple targets of MC-LR after entering the organism, which broadens the horizon and provides a valuable reference for the study of the toxicity mechanism of MC-LR.
Collapse
Affiliation(s)
- Minghao Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chengzhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Huifang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Tong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
2
|
Phan A, Sokolova A, Hilscherova K. An adverse outcome pathway approach linking retinoid signaling disruption to teratogenicity and population-level outcomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107143. [PMID: 39550998 DOI: 10.1016/j.aquatox.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Recent research efforts in endocrine disruption have focused on evaluating non-EATS (estrogen, androgen, thyroid, and steroidogenesis) pathways. Retinoid signaling disruption is noteworthy because of its teratogenic effects and environmental relevance. However, current environmental risk assessments are limited in their ability to evaluate impacts on individuals and populations. This study characterizes an Adverse Outcome Pathway (AOP) network linking retinoid signaling disruption to teratogenicity and survival in zebrafish. We identified Retinoic Acid Receptor (RAR) overactivation as the molecular initiating event leading to key events including craniofacial (CFM) and tail (TM) malformations, posterior swim bladder (SB) non-inflation, impaired swimming performance, and reduced feeding, ultimately resulting in decreased survival. Our study (1) determines critical sensitivity windows for CFM, posterior SB non-inflation, and TM, (2) provides quantitative measurements for CFM and TM, and (3) defines impacts on higher biological levels including food ingestion, swimming, and survival. Results show that all-trans retinoic acid (ATRA) induces strong teratogenic effects with sensitivity windows between 4 and 48 h post fertilization (hpf) for CFM, TM, and posterior SB non-inflation. TM is the most sensitive indicator, with EC50 of 0.2 - 0.26 µg/L across exposure windows 4-48, 4-72, 4-96, and 4-120 hpf. Besides inducing known malformations, ATRA impaired posterior SB inflation with EC50 of 1 - 1.21 µg/L across the same exposure windows. ATRA exposure (1 µg/L) resulted in 50 % food ingestion inhibition at 7 days post fertilization (dpf) and 10 % survival at 14 dpf. This study provides a regulatory-relevant framework linking developmental effects to population outcomes, highlighting ecological risks and needs for improved risk assessments.
Collapse
Affiliation(s)
- Audrey Phan
- RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Aleksandra Sokolova
- RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
3
|
Zi J, Barker J, Zi Y, MacIsaac HJ, Zhou Y, Harshaw K, Chang X. Assessment of estrogenic potential from exudates of microcystin-producing and non-microcystin-producing Microcystis by metabolomics, machine learning and E-screen assay. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134170. [PMID: 38613957 DOI: 10.1016/j.jhazmat.2024.134170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Cyanobacterial blooms, often dominated by Microcystis aeruginosa, are capable of producing estrogenic effects. It is important to identify specific estrogenic compounds produced by cyanobacteria, though this can prove challenging owing to the complexity of exudate mixtures. In this study, we used untargeted metabolomics to compare components of exudates from microcystin-producing and non-microcystin-producing M. aeruginosa strains that differed with respect to their ability to produce microcystins, and across two growth phases. We identified 416 chemicals and found that the two strains produced similar components, mainly organoheterocyclic compounds (20.2%), organic acids and derivatives (17.3%), phenylpropanoids and polyketides (12.7%), benzenoids (12.0%), lipids and lipid-like molecules (11.5%), and organic oxygen compounds (10.1%). We then predicted estrogenic compounds from this group using random forest machine learning. Six compounds (daidzin, biochanin A, phenylethylamine, rhein, o-Cresol, and arbutin) belonging to phenylpropanoids and polyketides (3), benzenoids (2), and organic oxygen compound (1) were tested and exhibited estrogenic potency based upon the E-screen assay. This study confirmed that both Microcystis strains produce exudates that contain compounds with estrogenic properties, a growing concern in cyanobacteria management.
Collapse
Affiliation(s)
- Jinmei Zi
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Justin Barker
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; Maps, Data, and Government Information Centre, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Yuanyan Zi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Yuan Zhou
- The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Keira Harshaw
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
4
|
Wang X, Ma T, Wei C, Liu J, Yu T, Zou Y, Liu S, Yang Z, Xi J. Toxic effects of exogenous retinoic acid on the neurodevelopment of zebrafish (Danio rerio) embryos. Neurotoxicol Teratol 2023; 100:107291. [PMID: 37689270 DOI: 10.1016/j.ntt.2023.107291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Endogenous retinoic acid (RA) is essential for embryonic development and maintaining adult physiological processes. Human-caused RA residues in the environment threaten the survival of organisms in the environment. We employed zebrafish as a model to explore the developmental impacts of excess RA. We used exogenous RA to raise the amount of RA signal in the embryos and looked at the effects of excess RA on embryonic morphological development. Upregulation of the RA signal significantly reduced embryo hatching and increased embryo malformation. To further understand the neurotoxic impact of RA signaling on early neurodevelopment, we measured the expression of neurodevelopmental marker genes and cell death and proliferation markers in zebrafish embryos. Exogenous RA disrupted stem cell (SC) and neuron marker gene expression and exacerbated apoptosis in the embryos. Furthermore, we looked into the links between the transcriptional coactivator RBM14 and RA signaling to better understand the mechanism of RA neurotoxicity. There was a negative interaction between RA signaling and the transcription coactivator RBM14, and the morpholino-induced RBM14 down-regulation can partially block the effects of RAR antagonist BMS493-induced RA signaling inhibition on embryonic malformation and cell apoptosis. In conclusion, exogenous RA causes neurodevelopmental toxicity, and RBM14 may be involved in this neurotoxic process.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ting Ma
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Cizhao Wei
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, China
| | - Juan Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ting Yu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Zou
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Song Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zheqiong Yang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, China.
| | - Jinlei Xi
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Smutná M, Javůrek J, Sehnal L, Toušová Z, Javůrková B, Sychrová E, Lepšová-Skácelová O, Hilscherová K. Potential risk of estrogenic compounds produced by water blooms to aquatic environment. CHEMOSPHERE 2023; 341:140015. [PMID: 37657694 DOI: 10.1016/j.chemosphere.2023.140015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Some freshwater phytoplankton species have been suggested to produce estrogenic compounds in concentrations which could cause adverse effects to aquatic biota, while other studies showed no estrogenic effects after exposure to phytoplankton extracts or pointed out possible sources of the overestimation of the estrogenic activity. This study aimed to clarify these research inconsistencies by investigating estrogenicity of biomass extracts from both environmental freshwater blooms and laboratory cyanobacterial and algae cultures by in vitro reporter bioassay. Biomasses of 8 cyanobacterial and 3 algal species from 7 taxonomic orders were extracted and tested. Next to this, samples of environmental water blooms collected from 8 independent water bodies dominated by phytoplankton species previously assessed as laboratory cultures were tested. The results showed undetectable or low estrogenicity of both freshwater blooms and laboratory cultures with E2 equivalent concentration (EEQ) in a range from LOQ up to 4.5 ng EEQ/g of dry mass. Moreover, the co-exposure of biomass extracts with environmentally relevant concentration of model estrogen (steroid hormone 17β-estradiol; E2), commonly occurring in surface waters, showed simple additive interaction. However, some of the biomass extracts elicited partially anti-estrogenic effects in co-exposure with higher E2 concentration. In conclusion, our study documents undetectable or relatively low estrogenic potential of biomass extracts from both environmental freshwater blooms and studied laboratory cultured cyanobacterial and algae species. Nevertheless, in case of very high-density water blooms, even this low estrogenicity (detected for two cyanobacterial species) could lead to EEQ content in biomass reaching effect-based trigger values indicating potential risk, if recalculated per water volume at field sites. However, these levels would not occur in water under realistic environmental scenarios and the potential estrogenic effects would be most probably minor compared to other toxic effects caused by massive freshwater blooms of such high densities.
Collapse
Affiliation(s)
- Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jakub Javůrek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Luděk Sehnal
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Barbora Javůrková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Olga Lepšová-Skácelová
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, České Budějovice, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|