1
|
Kozuka Y, Masuda T, Isu N, Takai M. Antimicrobial Peptide Assembly on Zwitterionic Polymer Films to Slow Down Biofilm Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7029-7037. [PMID: 38520398 DOI: 10.1021/acs.langmuir.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Formation of biofilms on equipment used in various fields, such as medicine, domestic sanitation, and marine transportation, can cause serious problems. The use of antibiofouling and bactericidal modifications is a promising strategy for inhibiting bacterial adhesion and biofilm formation. To further enhance the antibiofilm properties of a surface, various combinations of bactericidal modifications alongside antibiofouling modifications have been developed. Optimization of the arrangements of antimicrobial peptides on the antibiofouling surface would allow us to design longer-life antibiofilm surface modifications. In this study, a postmodification was conducted with different design using the antimicrobial peptide KR12 on an antibiofouling copolymer film consisting of 2-methacryloyloxyethyl phosphorylcholine, 3-methacryloxypropyl trimethoxysilane, and 3-(methacryloyloxy) propyl-tris(trimethylsilyloxy) silane. The distance of KR12 from the film was adjusted by combining different lengths of poly(ethylene glycol) (PEG) spacers (molecular weights are 2000 and 5000). The density of KR12 was ranged from 0.06 to 0.22 nm-2. When these modified surfaces were exposed to a nutrient-rich TSB suspension, the bacterial area formed by E. coli covered 5-127% of the original copolymer film. We found that a significant distance between the bactericidal and antibiofouling modifications, along with a higher density of bactericidal modifications, slows down the biofilm formation.
Collapse
Affiliation(s)
- Yuta Kozuka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Norifumi Isu
- LIXIL Corporation, 2-1-1 Ojima, Koto-ku, 136-8535 Tokyo, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
2
|
Wang Q, Miao Q, Huang K, Lin Y, Wang T, Bai X, Xu Q. Spatial-temporal clogging development in leachate collection systems of landfills: Insight into chemical and biological clogging characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:163-172. [PMID: 37660629 DOI: 10.1016/j.wasman.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
The clogging of leachate collection systems (LCSs) is a typical challenge for landfills operation. Although clogging occurs in different LCS components, its spatial-temporal distributions remain unclear. This study aimed to systematically investigate the dynamic clogging development in simulated LCSs by monitoring changes in clogging characteristics over time. Results revealed that clogging accumulated in all components of the simulated LCS during a 215-day period, including chemical clogging and bio-clogging. Distinct spatial variations in clogging components were observed along the leachate flow of the simulated LCS, with the geotextile being severely clogged due to bio-clogging (70.1 ± 3.0%-80.0 ± 0.5%). Additionally, chemical clogging mainly occurred at the top (85.4 ± 0.8%-95.0 ± 0.9%) and middle (91.2 ± 0.8%-94.9 ± 1.1%) gravel layers. Nevertheless, the percentage of chemical clogging decreased from 72.0 ± 2.1% (day 42) to 42.5 ± 2.7% (day 215) at the bottom gravel layer. Chemical clogging was the main type in the pipe, accounting for 69.6 ± 0.5% (day 215). In addition, the ratios of bio-clogging to chemical clogging changed over time in all LCS components. The spatial-temporal characteristics of clogging across LCS components can enhance the understanding of clogging mechanisms, facilitate the design optimization of LCSs, and promote the formulation of effective control strategies.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qianming Miao
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Ke Huang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Yeqi Lin
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Tong Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Xinyue Bai
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
Xuan Y, Zhang W, Zhu X, Zhang S. An updated overview of some factors that influence the biological effects of nanoparticles. Front Bioeng Biotechnol 2023; 11:1254861. [PMID: 37711450 PMCID: PMC10499358 DOI: 10.3389/fbioe.2023.1254861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Nanoparticles (NPs) can be extremely effective in the early diagnosis and treatment of cancer due to their properties. The nanotechnology industry is developing rapidly. The number of multifunctional NPs has increased in the market and hundreds of NPs are in various stages of preclinical and clinical development. Thus, the mechanism underlying the effects of NPs on biological systems has received much attention. After NPs enter the body, they interact with plasma proteins, tumour cell receptors, and small biological molecules. This interaction is closely related to the size, shape, chemical composition and surface modification properties of NPs. In this review, the effects of the size, shape, chemical composition and surface modification of NPs on the biological effects of NPs were summarised, including the mechanism through which NPs enter cells, the resulting oxidative stress response, and the interaction with proteins. This review of the biological effects of NPs can not only provide theoretical support for the preparation of safer and more efficient NPs but also lay the foundation for their clinical application.
Collapse
Affiliation(s)
- Yang Xuan
- Key Laboratory of Biological Resources and Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China
| | - Wenliang Zhang
- Key Laboratory of Biological Resources and Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China
| | - Xinjiang Zhu
- Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Shubiao Zhang
- Key Laboratory of Biological Resources and Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Noureen L, Wang Q, Humayun M, Shah WA, Xu Q, Wang X. Recent advances in structural engineering of photocatalysts for environmental remediation. ENVIRONMENTAL RESEARCH 2023; 219:115084. [PMID: 36535396 DOI: 10.1016/j.envres.2022.115084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalysis appears to be an appealing approach for environmental remediation including pollutants degradation in water, air, and/or soil, due to the utilization of renewable and sustainable source of energy, i.e., solar energy. However, their broad applications remain lagging due to the challenges in pollutant degradation efficiency, large-scale catalyst production, and stability. In recent decades, massive efforts have been devoted to advance the photocatalysis technology for improved environmental remediation. In this review, the latest progress in this aspect is overviewed, particularly, the strategies for improved light sensitivity, charge separation, and hybrid approaches. We also emphasize the low efficiency and poor stability issues with the current photocatalytic systems. Finally, we provide future suggestions to further enhance the photocatalyst performance and lower its large-scale production cost. This review aims to provide valuable insights into the fundamental science and technical engineering of photocatalysis in environmental remediation.
Collapse
Affiliation(s)
- Laila Noureen
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qian Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Muhammad Humayun
- School of Optical and Electronics Information, Wuhan National Laboratory for Optoelectronic, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Qiyong Xu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|