1
|
Joo SH, Knauer K, Su C, Toborek M. Antibiotic resistance in plastisphere. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2025; 13:115217. [PMID: 40265125 PMCID: PMC12013715 DOI: 10.1016/j.jece.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Microbial life on plastic debris, called plastisphere, has invoked special attention on aquatic ecosystems as emerging habitats for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). There is scarce information concerning how properties of plastics influence ARGs and ARB, the effect of biofilms on enrichment of ARGs and ARB, and, especially, the influence of plastic transformation on ARGs and ARB. Limited research has shown that microplastic (MP) surfaces influence proliferation of antibiotic resistance (AR), aged MPs exhibit increased toxicity due to more adsorption-desorption of AR, and MP transformation is correlated with disseminating AR. Prevention measures of AR include minimizing MP releasing into aquatic environments and sewage treatment plants. The future research should aim to identify the interface mechanisms of transformed MNPs and antibiotics alone, or mixed with other contaminants, property changes of MNPs, and associated toxicity evaluation.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Engineering & Engineering Technology, College of Aerospace, Computing, Engineering, and Design, Metropolitan State University of Denver, CO, USA
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, USA
| | - Katrina Knauer
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, USA
| | - Chunming Su
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, US. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, 1011 NW 15th Street, Miami, FL 33136, USA
| |
Collapse
|
2
|
Tang KHD, Li R. Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions. Antibiotics (Basel) 2024; 13:941. [PMID: 39452208 PMCID: PMC11504238 DOI: 10.3390/antibiotics13100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well as the other pollutants on or around microplastics and the chemicals leached from microplastics, on the associated ARGs. Results: It highlights that microplastic photoaging generally results in higher sorption of antibiotics and ARGs due to increased microplastic surface area and functional group changes. Photoaging produces reactive oxygen species, facilitating ARG transfer by increasing bacterial cell membrane permeability. Reactive oxygen species can interact with biofilms, suggesting combined effects of microplastic aging on ARGs. The effects of mechanical aging were deduced from studies showing larger microplastics anchoring more ARGs due to rough surfaces. Smaller microplastics from aging penetrate deeper and smaller places and transport ARGs to these places. High temperatures are likely to reduce biofilm mass and ARGs, but the variation of ARGs on microplastics subjected to thermal aging remains unknown due to limited studies. Biotic aging results in biofilm formation on microplastics, and biofilms, often with unique microbial structures, invariably enrich ARGs. Higher oxidative stress promotes ARG transfer in the biofilms due to higher cell membrane permeability. Other environmental pollutants, particularly heavy metals, antibacterial, chlorination by-products, and other functional genes, could increase microplastic-associated ARGs, as do microplastic additives like phthalates and bisphenols. Conclusions: This review provides insights into the environmental fate of co-existing microplastics and ARGs under the influences of aging. Further studies could examine the effects of mechanical and thermal MP aging on their interactions with ARGs.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, College of Agriculture, Life & Environmental Sciences, The University of Arizona (UA), Tucson, AZ 85721, USA
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
| | - Ronghua Li
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
- Department of Environmental Science and Engineering, College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
3
|
Li H, Lian Y, Li S, Yang M, Xie Q, Qiu L, Liu H, Long Y, Hu L, Fang C. The stress response of tetracycline resistance genes and bacterial communities under the existence of microplastics in typical leachate biological treatment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121865. [PMID: 39018858 DOI: 10.1016/j.jenvman.2024.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Landfill leachate is an important source of microplastics (MPs) and antibiotic-resistance genes (ARGs). Here, in the presence of polystyrene MPs (PS-MPs) and polyethylene MPs (PE-MPs), the nitrogen and phosphorus removal effect and sludge structure performance were affected in an anaerobic-anoxic-aerobic system, a typical biological leachate treatment process. The abundance of tetracycline-resistance genes (tet genes) in biofilms on the two types of MP was significantly higher than that in the leachate and sludge, and the load on PE-MPs was higher than that on PS-MPs because of the porous structure of PE-MPs. Aging of the MPs increased their surface roughness and abundance of oxygen-containing functional groups and shaped the profile of ARGs in the MP biofilms. The biofilm biomass and growth rate on the two types of MP increased with the incubation time in the first 30 days, and was affected by environmental factors. Structural equation models and co-occurrence network analysis demonstrated that the MPs indirectly affected the spectrum of ARGs by affecting biofilm formation, and, to a lesser extent, had a direct impact on the selective enrichment of ARGs. We discuss the mechanisms of the relationships between MPs and ARGs in the leachate treatment system, which will have guiding significance for future research. Our data on the colonization of microorganisms and tet genes in MPs biofilms provide new evidence concerning the accumulation and transmission of these ARGs, and are important for understanding the mechanisms of MPs in spreading pollution.
Collapse
Affiliation(s)
- Hong Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yiting Lian
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Siyi Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Mingdi Yang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Qiaona Xie
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Libo Qiu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Hongyuan Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
5
|
Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F. Microplastisphere antibiotic resistance genes: A bird's-eye view on the plastic-specific diversity and enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169316. [PMID: 38103611 DOI: 10.1016/j.scitotenv.2023.169316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The microplastisphere is a dense consortium of metabolically active microorganisms that develops on the surface of microplastics. Since the discovery that it harbors antibiotic resistance genes (ARGs), there has been a quest to decipher the relationship between ARG occurrences and selective enrichment with plastic types, which is important to understand their fate in diverse environmental settings. Nonetheless, it remains a neglected topic, and this developing field of microplastics research could benefit from a comprehensive review to acquire a deeper understanding of the most recent advances and drive scientific progress. Accordingly, the goal of this review is to critically discuss and provide an in-depth assessment of the evidence of ARGs' global nature in microplastispheres, as well as explore factors that influence them directly and indirectly, highlighting important concerns and knowledge gaps throughout the article. By comprehensively covering them, we underscore the potential environmental implications associated with microplastisphere ARGs. From our analysis, it emerged that microplastisphere ARGs are likely to be impacted not only by differences in microplastic types and characteristics but also by how their environments are shaped by other agents such as physiochemical properties, socioeconomic factors, and contaminants coexistence, influencing ARG subtype, incidence, abundance, and selective enrichment. The intricate relationship of microplastisphere ARGs to environmental conditions and plastic types calls for multilevel investigations to clearly assess the environmental fate of microplastics. We anticipate that this review could assist researchers in strengthening their foundation and identifying efforts to advance knowledge in this research field.
Collapse
Affiliation(s)
- V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
Qin P, Cui H, Li P, Wang S, Fan S, Lu J, Sun M, Zhang H, Wang S, Su X, Fu H, Hu X, Lin J, Zhang Y, Ding W, Zhang W. Early stage of biofilm assembly on microplastics is structured by substrate size and bacterial motility. IMETA 2023; 2:e121. [PMID: 38867926 PMCID: PMC10989967 DOI: 10.1002/imt2.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2024]
Abstract
The taxonomic structure of biofilms on 0.3-mm microplastics differed significantly from that on 3-mm microplastics or glass particles. Compared with the 3-mm microplastics, biofilms on 0.3-mm microplastics were enriched for genes involved in flagellar-based motility and chemotaxis, pointing to a more 'mobile' community. The association between motility and bacterial colonization of 0.3-mm microplastics was observed through laboratory experiments using isolated strains.
Collapse
Affiliation(s)
- Peng Qin
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Han Cui
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Panxin Li
- College of Life SciencesYan'an UniversityYan'anChina
| | - Shuaitao Wang
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Shen Fan
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Jie Lu
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Meng Sun
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Heng Zhang
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Shougang Wang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
| | - Xiaoyan Su
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of ChinaQingdaoChina
| | - Hui‐Hui Fu
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of ChinaQingdaoChina
| | - Xiaoli Hu
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
| | - Jinshui Lin
- College of Life SciencesYan'an UniversityYan'anChina
| | - Yu‐Zhong Zhang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of ChinaQingdaoChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Wei Ding
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
| | - Weipeng Zhang
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
7
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|