1
|
Chen Z, Zhou Z, Ji C, Yao Z, Mao J, Wang Z, Xiang Y, Zhang T, Zhou Y, Chen Z, Dou G. Comparison of the polluted dust plume and natural dust air mass in a spring dust event in Beijing 2023. J Environ Sci (China) 2025; 154:760-773. [PMID: 40049914 DOI: 10.1016/j.jes.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 05/13/2025]
Abstract
The occurrence of extreme weather events is becoming more frequent due to global climate change. A long-lasting dust outbreak in the spring of 2023 was triggered by Mongolia cyclones and cold fronts in the dust source areas. In this study, we illustrate the spatial distribution, the transport path of the dust and its influence on the air quality of downstream cities utilizing ground-based and space-borne measurements. Results indicate a more complicated pollution, coexisting of polluted dust stage S1 and pure dust stage S2. In S1, the aerosol was characterized by a dual-layer vertical structure-high extinction coefficient of nearly 1.0 km-1 with a low particle depolarized ratio (PDR) of < 0.1 under 500 m, and a small extinction coefficient of 0.3 km-1 with a high PDR of 0.15 above 500 m. Then the intrusion of the Mongolian cyclone carried new dust plumes on March 10, 2023, suggesting the onset of pure dust period S2. The source transition was also confirmed by the MODIS, CALIPSO and Hysplit observations. The pure Asian dust evolved rapidly with one thickening layer and distributed homogeneously in the boundary layer. The PDR increased significantly to the peak of 0.35 and resulted in the peak PM10 value of > 1300 µg/m3. PM10 positively correlated with trace gases in S1 while varying inversely with the pollution gases in S2. The results help to shed light on the classification of different types of dust and also be useful in developing an effective strategy to forecast air pollution in downstream areas.
Collapse
Affiliation(s)
- Zhenyi Chen
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhonghao Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chengli Ji
- CMA Meteorological Observation Centre, Beijing 100081, China; CMA Research Centre on Meteorological Observation Engineering Technology (RCOET), Beijing 100081, China.
| | - Zhiliang Yao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jiajia Mao
- CMA Meteorological Observation Centre, Beijing 100081, China
| | - Zhicheng Wang
- CMA Meteorological Observation Centre, Beijing 100081, China
| | - Yan Xiang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230031, China
| | - Tianshu Zhang
- Key Lab. of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yi Zhou
- Sichuan Meteorological Observatory, Chengdu 610072, China
| | - Zijian Chen
- Hebei Meteorological Observatory, Shijiazhuang 050021, China
| | - Gang Dou
- Xinjiang Meteorological Observatory, Wulumuqi 830000, China
| |
Collapse
|
2
|
Ding X, Ren J, Lu H. Spatial impact of environmental regulation on firm entry: Empirical evidence from Chinese firm registration data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124164. [PMID: 39837139 DOI: 10.1016/j.jenvman.2025.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Facing severe environmental challenges and a rapidly changing economic landscape, it is important to deeply analyze the specific impact of environmental regulation on firm entry. This paper used data on enterprise registrations from 279 Chinese cities between 2007 and 2020. We employed spatial econometric models to study the spatial impact of environmental regulation on firm entry. The results show that environmental regulation has a significant direct inhibitory effect on firm entry, especially more pronounced for manufacturing firms. At the same time, environmental regulation also has spatial spillover effects, influencing firm entry decisions in neighboring areas. Furthermore, it is found that environmental regulation improves environmental quality, which in turn inhibits the entry of manufacturing firms while attracting service firms. Based on these findings, policymakers need to fully consider the impact of environmental regulations on the entry of manufacturing and service firms, as well as the spatial spillover effects on firm entry in neighboring areas. Moreover, environmental regulation policies should be adjusted according to the specific development situations of cities. This will help achieve a coordinated development of environmental protection and economic growth.
Collapse
Affiliation(s)
- Xinting Ding
- School of Economics and Management, Harbin Institute of Technology Shenzhen, Guangdong, China
| | - Jifan Ren
- School of Economics and Management, Harbin Institute of Technology Shenzhen, Guangdong, China
| | - Haiyan Lu
- School of Economics and Management, Harbin Institute of Technology Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Chen YW, Ho TPT, Liu KT, Jian MY, Katoch A, Cheng YH. Exploring the characteristics and source-attributed health risks associated with polycyclic aromatic hydrocarbons and metal elements in atmospheric PM 2.5 during warm and cold periods in the northern metropolitan area of Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124703. [PMID: 39128606 DOI: 10.1016/j.envpol.2024.124703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and metal elements are commonly considered hazardous air pollutants due to their toxic, mutagenic, and carcinogenic properties. However, few studies have simultaneously examined their potential sources and health effects. This study aimed to quantify the PAHs and metal elements in atmospheric PM2.5, investigating their characteristics and potential sources to assess associated health risks in the northern metropolitan area of Taiwan. The measurements indicated that the mean concentrations of total PAHs and metal elements in PM2.5 were 0.97 ± 0.52 ng m-3 and 590 ± 200 ng m-3, respectively. Utilizing the positive matrix factorization profiles, the PAH pollution was classified into two sources: industrial emissions, traffic emissions, and coal combustion (69%) were the predominant sources of PAHs, with petroleum volatilization and biomass burning (31%) making a lesser contribution. Similarly, we traced metal elements to three potential sources: natural sources (48%), a combined source of industrial emissions, coal combustion, and traffic exhaust (32%), and a blend of non-exhaust emissions from traffic and waste incineration sources (20%). Results from the potential source contribution function model suggested that the emissions of PAHs and metals could be influenced by the eastern regions of China, although local sources, including waste incinerators, traffic, shipping, and harbor activities, were identified as the primary contributors. Source-attributed excess cancer risk revealed that industry, traffic, and coal combustion had the highest cancer risk posed by PAHs in the cold period (1.0 × 10-5), while the greatest cancer risk among metal elements was linked to non-exhaust emissions from traffic and waste incineration emissions (2.0 × 10-5). This research underscores the importance of considering source contributions to health risk and emission reduction when addressing PM2.5 pollution. These findings have direct implications for policymakers, providing them with valuable insights to develop strategies that protect public health from the detrimental effects of PAH and metal element exposure.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Thi Phuong Thao Ho
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Kuan-Ting Liu
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Meng-Ying Jian
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Ankita Katoch
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, 613016, Taiwan.
| |
Collapse
|
4
|
Sun N, Wu L, Zheng F, Liang D, Qi F, Song S, Peng J, Zhang Y, Mao H. Atmospheric environment characteristic of severe dust storms and its impact on sulfate formation in downstream city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171128. [PMID: 38395168 DOI: 10.1016/j.scitotenv.2024.171128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
This study comprehensively investigated the impact of dust storms (DSs) on downstream cities, by selecting representative DS events. In this paper, we discussed the characteristics of meteorological conditions, air pollutants, PM2.5 components, and their influence on sulfate formation mechanisms. During DSs, strong winds, reaching speeds of up to 10 m/s, led to significant increases in PM10 and PM2.5, with maximum concentrations of 2684.5 and 429 μg/m3, respectively. Primary gaseous pollutants experienced substantial reductions, with decline rates of 48.1, 34.9, 36.8, and 9.0 % for SO2, NO2, NH3, and CO, respectively. Despite a notable increase in PM2.5 concentrations, only 7.6 % of the total mass of PM2.5 was attributed to ionic and carbonaceous components, a much lower value than observed before the DSs (77.3 %). Concentrations of Fe, Ti, and Mn exhibited increases by factors of 6.5-14.1, 10.4-17.0, and 1.6-4.7, respectively. In contrast to the significant decrease of >76.2 % in nitrogen oxidation ratio (NOR), sulfur oxidation ratio (SOR) remained at a relatively high level, displaying a strong positive correlation with high concentrations of Fe, Mn, and Ti. Quantitative analysis revealed an average increase of 0.187 and 0.045 μg/m3 in sulfate from natural sources and heterogeneous generation, respectively. The heterogeneous reaction on mineral dust was closely linked to atmospheric humidity, radiation intensity, the form of metal existence, and concentrations of it. High concentrations of titanium dioxide and iron‑manganese oxides in mineral dust promoted heterogeneous oxidation of SO2 through photocatalysis during the daytime and metal ion catalysis during the nighttime. This study establishes that the metal components in mineral dust promote heterogeneous sulfate formation, quantifies the yield of sulfate generated as a result, and provides possible mechanisms for heterogeneous sulfate formation.
Collapse
Affiliation(s)
- Naixiu Sun
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Fangyuan Zheng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Danni Liang
- Tianjin Shuangyun Environmental Protection Technology Co., Ltd., Tianjin 300350, China
| | - FuYuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shaojie Song
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yufen Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Gao X, Li W, Sun X, Hao Y, Sun M, Yang Y, Wu G, Zhou Y. The important role of nitrate in iron and manganese dissolution and sulfate formation in fine particles at a coastal site in Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170318. [PMID: 38280608 DOI: 10.1016/j.scitotenv.2024.170318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Bioavailable transition trace elements, such as soluble iron (Fes) and soluble manganese (Mns) in aerosols, play a crucial role in atmospheric sulfate formation and marine ecosystems. In this study conducted during the spring of 2017 in Qingdao, a coastal city in Northern China, we applied a combined approach of multiple linear regression (MLR) incorporating the results of positive matrix factorization (PMF) to estimate the solubility of Fe and Mn from various sources. PMF analysis showed that dust was the largest contributor to total Fe (FeT) (45.5 %), followed by non-ferrous smelting (20.3 %) and secondary formation processes (17.8 %). However, secondary formation processes (33.2 %), vehicle exhaust (19.3 %) and aqueous-phase processes (19.0 %) were found to be the primary contributors to Fes. For total Mn (MnT) and Mns, dust (21.2 % ∼ 35.0 %), secondary formation processes (20.3 % ∼ 25.6 %) and industry (12.6 % ∼ 16.3 %) were identified as the dominant contributors. The solubilities of Fe and Mn varied significantly depending on their sources. Interestingly, nitrate played a more pronounced role than sulfate in facilitating the dissolution of Fe and Mn during the acid processing due to the high molar ratio of NO3-/2SO42- (1.72 ± 0.54) under the average RH of 56 % ± 15 %. This phenomenon suggested that the acid processing was primarily triggered by nitrate formation due to the low deliquescence relative humidity (DRH) of nitrate. Additionally, we discovered that the catalytic oxidation of SO2 in aerosol water was primarily driven by Fe rather than Mn, serving as a more significant pathway for sulfate formation within a pH range of 2.0 to 4.4. These findings provide valuable insights into the impact of acidification on the dissolution of Fe and Mn under conditions of moderate RH in the real ambient atmosphere with the increasing of NO3-/2SO42- molar ratio.
Collapse
Affiliation(s)
- Xiaomei Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, China
| | - Wenshuai Li
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xiaoyan Sun
- Jinan Ecological and Environmental Monitoring Center, Jinan, Shandong, China
| | - Yu Hao
- North China Sea Data and Information Service, State Oceanic Administration, Qingdao, Shandong, China.
| | - Mingge Sun
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yiyan Yang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Guanru Wu
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yang Zhou
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Yang Y, Sun M, Wu G, Qi Y, Zhu W, Zhao Y, Zhu Y, Li W, Zhang Y, Wang N, Sheng L, Wang W, Yu X, Yu J, Yao X, Zhou Y. Characteristics of aerosol aminiums over a coastal city in North China: Insights from the divergent impacts of marine and terrestrial influences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170672. [PMID: 38316306 DOI: 10.1016/j.scitotenv.2024.170672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Aminium ions, as crucial alkaline components within fine atmospheric particles, have a notable influence on new particle formation and haze occurrence. Their concentrations within coastal atmosphere depict considerable variation due to the interplay of distinctive marine and terrestrial sources, further complicated by dynamic meteorological conditions. This study conducted a comprehensive examination of aminiums ions concentrations, with a particular focus on methylaminium (MMAH+), dimethylaminium (DMAH+), trimethylaminium (TMAH+), and triethylaminium (TEAH+) within PM2.5, over varying seasons (summer, autumn, and winter of 2019 and summer of 2021), at an urban site in the coastal megacity of Qingdao, Northern China. The investigations revealed that the total concentration of particulate aminium ions (∑Aminium) was 21.6 ± 23.6 ng/m3, exhibiting higher values in the autumn and winter compared to the two summer periods. Considering diurnal variations during autumn and winter, concentrations of particulate aminium ions (excluding TEAH+) exhibited a slight increase during the day compared to night, with a notable peak during the morning hours. However, it was not the case for TEAH+, which was argued to be readily oxidized by ambient oxidants in the afternoon. Additionally, the ∑Aminium within the summer demonstrated markedly elevated levels during the day compared to night, potentially attributed to daytime sea fog associated with sea-land breeze interactions. Positive matrix factorization results indicate terrestrial anthropogenic emissions, including vehicle emission mixed with road dust and primary pollution, as the primary sources of MMAH+ and DMAH+. Conversely, TMAH+ was predominantly emitted from agricultural and marine sources. With the dominance of sea breeze in summer, TMAH+ was identified as a primary marine emission correlated with sea salt, while MMAH+, DMAH+, and TEAH+ were postulated to undergo secondary formation. Furthermore, a notable inverse correlation was observed between TMAH+ and methanesulfonate in PM2.5, consistent with dynamic emissions of sulfur-content and nitrogen-content gases reported in the literature.
Collapse
Affiliation(s)
- Yiyan Yang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Mingge Sun
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Guanru Wu
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yuxuan Qi
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Wenqing Zhu
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yunhui Zhao
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenshuai Li
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yanjing Zhang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Nana Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; Jiaozhou Meteorological Bureau, Qingdao Meteorological Bureau, Qingdao 266300, China
| | - Lifang Sheng
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Wencai Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Xu Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, 999077, Hong Kong
| | - Jianzhen Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, 999077, Hong Kong; Department of Chemistry, Hong Kong University of Science and Technology, 999077, Hong Kong
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology (MoE), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Zhou
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
7
|
Zhang H, Wang X, Lv L, Li G, Liu X, Li X, Yao Z. Insights into quantitative evaluation technology of PM 2.5 transport at multi-perspective and multi-spatial and temporal scales in the north China plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122693. [PMID: 37802287 DOI: 10.1016/j.envpol.2023.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Cross-border transport is a crucial factor affecting air quality, while how to quantify the transport contribution through different technologies at multi-perspective and multi-scale have not been fully understood. This study established three quantification techniques, and conducted a systematic assessment of PM2.5 transport over the North China Plain (NCP) based on numerical simulations and vertical observations. Results suggested that the annual local emissions, inter-urban and outer-regional transport contributed 44.5%-64.6%, 15.2%-27.9% and 18.0%-28.2% of total surface PM2.5 concentrations, respectively, with transport intensity stronger in July and April, yet weaker in January and October. The southwest-northeast, northeast-southwest, and southeast-northwest were three prevailing transport directions near the surface. By comparison, the annual PM2.5 transport contribution below the atmospheric boundary layer height increased by 16.8%-24.5% in Beijing, Tianjin and Shijiazhuang, with inter-urban and outer-regional contribution of 29.8%-32.1% and 18.5%-23.1%. Furthermore, observed fluxes from fixed-point and vehicle-based mobile lidar were in good agreement with the simulated flux. PM2.5 net flux intensity varied with height, with generally larger at the middle- and high-altitude layer than that of low-altitude layer. In the early, during and late period of haze peak formation (Stage Ⅰ, Ⅱ, Ⅲ, respectively), the largest absolute flux intensity on average was Stage Ⅱ (566.7 t/d), followed by Stage Ⅲ (307.0 t/d) and Ⅰ (191.4 t/d). Besides, external transport may dominate the second concentration peak, while local emissions may play a more vital role in the first and third peaks. It has been noted that joint prevention and control measures should be proposed 1-2 days before reaching PM2.5 extremes. These findings could improve our understanding of transport influence mechanism of PM2.5 and propose effective emission reduction measures in the NCP region.
Collapse
Affiliation(s)
- Hanyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuejun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Longyue Lv
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Guohao Li
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing, 100037, China
| | - Xiaoyu Liu
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing, 100037, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|