1
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
2
|
Liu M, Zhang L, Geng N. Effect of Interlayer Construction on TFC Nanofiltration Membrane Performance: A Review from Materials Perspective. MEMBRANES 2023; 13:membranes13050497. [PMID: 37233558 DOI: 10.3390/membranes13050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Polyamide (PA) thin-film composite (TFC) nanofiltration (NF) membranes, which are extensively utilized in seawater desalination and water purification, are limited by the upper bounds of permeability-selectivity. Recently, constructing an interlayer between the porous substrate and the PA layer has been considered a promising approach, as it may resolve the trade-off between permeability and selectivity, which is ubiquitous in NF membranes. The progress in interlayer technology has enabled the precise control of the interfacial polymerization (IP) process, which regulates the structure and performance of TFC NF membranes, resulting in a thin, dense, and defect-free PA selective layer. This review presents a summary of the latest developments in TFC NF membranes based on various interlayer materials. By drawing from existing literature, the structure and performance of new TFC NF membranes using different interlayer materials, such as organic interlayers (polyphenols, ion polymers, polymer organic acids, and other organic materials) and nanomaterial interlayers (nanoparticles, one-dimensional nanomaterials, and two-dimensional nanomaterials), are systematically reviewed and compared. Additionally, this paper proposes the perspectives of interlayer-based TFC NF membranes and the efforts required in the future. This review provides a comprehensive understanding and valuable guidance for the rational design of advanced NF membranes mediated by interlayers for seawater desalination and water purification.
Collapse
Affiliation(s)
- Mingxiang Liu
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Nannan Geng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
3
|
Ding M, Xu H, Wang A, Yao C, Wang A, Gao L. Water recovery from wastewater by γFe2O3@Ti3C2Tx nanocomposites based on peroxymonosulfate activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|